Vol. 66
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2016-02-23
First Principles Cable Braid Electromagnetic Penetration Model
By
Progress In Electromagnetics Research B, Vol. 66, 63-89, 2016
Abstract
The model for penetration of a wire braid is rigorously formulated. Integral formulas are developed from energy principles for both self and transfer immittances in terms of potentials for the fields. The detailed boundary value problem for the wire braid is also set up in a very efficient manner; the braid wires act as sources for the potentials in the form of a sequence of line multipoles with unknown coefficients that are determined by means of conditions arising from the wire surface boundary conditions. Approximations are introduced to relate the local properties of the braid wires to a simplified infinite periodic planar geometry. This is used to treat nonuniform coaxial geometries including eccentric interior coaxial arrangements and an exterior ground plane.
Citation
Larry Kevin Warne, William L. Langston, Lorena I. Basilio, and William A. Johnson, "First Principles Cable Braid Electromagnetic Penetration Model," Progress In Electromagnetics Research B, Vol. 66, 63-89, 2016.
doi:10.2528/PIERB15121806
References

1. Schelkunoff, S. A., "The electromagnetic theory of coaxial transmission lines and cylindrical shields," Bell System Technical Journal, Vol. 13, 532-579, 1934.
doi:10.1002/j.1538-7305.1934.tb00679.x

2. Kaden, H., Wirbelstrome und Schirmung in der Nachrichtentechnik, Springer-Verlag, 1959.
doi:10.1007/978-3-540-32570-3

3. Krugel, L., "Abschirmwirkung von aussenleitern flexibler koaxialkabel," Telefnken-Zeitung, Vol. 29, No. 114, 256-266, Dec. 1956.

4. Vance, E. F., Coupling to Shielded Cables, R. E. Krieger, 1987.

5. Lee, K. S. H., EMP Interaction: Principles, Techniques, and Reference Data, Hemisphere Publishing Corp., 1986.

6. Tyni, M., "The transfer impedance of coaxial cables with braided outer conductor,", 410-419, FV. Nauk, Inst. Telekomum Akust. Politech Wroclaw, Ser. Konfi, 1975.

7. Sali, S., "An improved model for the transfer impedance calculations of braided coaxial cables," IEEE Transactions on Electromagnetic Compatibility, Vol. 33, No. 2, 139-143, May 1991.
doi:10.1109/15.78351

8. Zhou, G. and L. Gong, "An improved analytic model for braided cable shields," IEEE Transactions on Electromagnetic Compatibility, Vol. 32, No. 2, 161-163, May 1990.
doi:10.1109/15.52412

9. Kley, T., "Optimized single-braided cable shields," IEEE Transactions on Electromagnetic Compatibility, Vol. 35, No. 1, 1-9, Feb. 1993.
doi:10.1109/15.249390

10. Tesche, F. M., M. V. Ianoz, and T. Karlsson, EMC Analysis Methods and Computational Models, John Wiley & Sons, Inc., 1997.

11. Latham, R. W., Small holes in cable shields, AFWL Interaction Note 118, Sep. 1972.

12. Hudson, H. G., S. L. Stronach, W. Derr, W. A. Johnson, L. K. Warne, and R. E. Jorgenson, Cable test system upgrade --- Coaxial cable/connector model validation experiments, Internal Sandia Test Report, FY2000/2001.

13. Smythe, W. R., Static and Dynamic Electricity, 76-78, Hemisphere Pub. Corp., 1989.

14. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series, and Products, 366, Academic Pr., 1965.

15. Warne, L. K., K. O. Merewether, and W. A. Johnson, Approximations to wire grid inductance, Sandia Report, SAND2007-8116, Jan. 2008.

16. Warne, L. K., W. L. Langston, L. I. Basilio, and W. A. Johnson, Cable braid electromagnetic penetration model, Sandia National Laboratories Report, SAND2015-5019, Albuquerque, NM, Jun. 2015.