1. Devaney, A., "A filtered backpropagation algorithm for diffraction tomography," Ultrasonic Imaging, Vol. 4, No. 4, 336-350, 1982.
doi:10.1177/016173468200400404
2. Kak, A. C. and M. Slaney, "Tomographic imaging with diffracting sources," Principles of Computerized Tomographic Imaging, IEEE Press, New York, 1988.
3. Semenov, S., "Microwave tomography: Review of the progress towards clinical applications," Phil. Trans. of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 367, No. 1900, 3021-3042, 2009.
doi:10.1098/rsta.2009.0092
4. Ritzwoller, M. H., et al., "Global surface wave diffraction tomography," Jour. of Geophys. Res. Solid Earth, Vol. 107, No. B12, ESE 4-1-ESE 4-13, 2002.
doi:10.1029/2002JB001777
5. Gorski, W. and W. Osten, "Tomographic imaging of photonic crystal fibers," Optics Letters, Vol. 32, No. 14, 1977-1979, 2006.
doi:10.1364/OL.32.001977
6. Sung, Y., et al., "Optical diffraction tomography for high resolution live cell imaging," Opt. Express, Vol. 17, No. 1, 266-277, 2009.
doi:10.1364/OE.17.000266
7. Kostencka, J., et al., "Accurate approach to capillary-supported optical diffraction tomography," Opt. Express, Vol. 23, No. 6, 7908-7923, 2015.
doi:10.1364/OE.23.007908
8. Catapano, I., L. Di Donato, L. Crocco, O. M. Bucci, A. F. Morabito, T. Isernia, and R. Massa, "On quantitative microwave tomography of female breast," Progress In Electromagnetics Research, Vol. 97, 75-93, 2009.
doi:10.2528/PIER09080604
9. Drogoudis, D. G., G. A. Kyriacou, and J. N. Sahalos, "Microwave tomography employing an adjoint network based sensitivity matrix," Progress In Electromagnetics Research, Vol. 94, 213-242, 2009.
doi:10.2528/PIER09060808
10. Baran, A., D. J. Kurrant, A. Zakaria, E. C. Fear, and J. LoVetri, "Breast imaging using microwave tomography with radar-based tissue-regions estimation," Progress In Electromagnetics Research, Vol. 149, 161-171, 2014.
doi:10.2528/PIER14080606
11. Bayat, N. and P. Mojabi, "The effect of antenna incident field distribution on microwave tomography reconstruction," Progress In Electromagnetics Research, Vol. 145, 153-161, 2014.
doi:10.2528/PIER14021905
12. Tayebi, A., et al., "Design and development of an electrically-controlled beam steering mirror for microwave tomography," AIP Conf. Proc. QNDE, Vol. 1650, No. 1, 501-508, 2015.
doi:10.1063/1.4914647
13. Tayebi, A., et al., "Dynamic beam shaping using a dual-band electronically tunable reflectarray antenna," IEEE Trans. on Antennas and Propagation, Vol. 63, No. 10, 4534-4539, 2015.
doi:10.1109/TAP.2015.2456939
14. Paladhi, P. R., et al., "Reconstruction algorithm for limited-angle diffraction tomography for microwave NDE," AIP Conf. Proc. QNDE, Vol. 1581, No. 1, 1544-1551, 2014.
doi:10.1063/1.4865007
15. Ren, X. Z., et al., "A three-dimensional imaging algorithm for tomography SAR," IEEE International Geoscience and Remote Sensing Symposium 2009, 184-187, Cape Town, South Africa, 2009.
16. Ren, X.-Z., L. H. Qiao, and Y. Qin, "A three-dimensional imaging algorithm for tomography SAR based on improved interpolated array transform," Progress In Electromagnetics Research, Vol. 120, 181-193, 2011.
17. Capozzoli, A., C. Curcio, and A. Liseno, "Fast GPU-based interpolation for SAR backprojection," Progress In Electromagnetics Research, Vol. 133, 259-283, 2013.
doi:10.2528/PIER12071909
18. Tsihrintzis, G. A. and A. J. Devaney, "Higher-order (nonlinear) diffraction tomography: Reconstruction algorithms and computer simulation," IEEE Trans. Image Proc., Vol. 9, No. 9, 1560-1572, 2000.
doi:10.1109/83.862637
19. Vouldis, A. T., et al., "Three-dimensional diffraction tomography using ¯ltered backpropagation and multiple illumination planes," IEEE Trans. Instr. and Meas., Vol. 55, No. 6, 1975-1984, 2006.
doi:10.1109/TIM.2006.884276
20. Ayasso, H., et al., "Bayesian inversion for optical diffraction tomography," Jour. Modern. Optics, Vol. 57, No. 9, 765-776, 2010.
doi:10.1080/09500340903564702
21. Sung, Y. and R. R. Dasari, "Deterministic regularization of three-dimensional optical diffraction tomography," JOSA A, Vol. 28, No. 8, 1554-1561, 2011.
doi:10.1364/JOSAA.28.001554
22. Devaney, A., "The limited-view problem in diffraction tomography," Inverse Problems, Vol. 5, No. 4, 501-521, 1989.
doi:10.1088/0266-5611/5/4/006
23. Pan, A. and M. A. Anastasio, "Minimal-scan filtered backpropagation algorithms for diffraction tomography," JOSA A, Vol. 16, No. 12, 2896-2903, 1999.
doi:10.1364/JOSAA.16.002896
24. Pan, X., "Unified reconstruction theory for diffraction tomography, with consideration of noise control," JOSA A, Vol. 15, No. 9, 2312-2326, 1998.
doi:10.1364/JOSAA.15.002312
25. Anastasio, M. A. and X. Pan, "Full-and minimal-scan reconstruction algorithms for fan-beam diffraction tomography," Applied Optics, Vol. 40, No. 20, 3334-3345, 2001.
doi:10.1364/AO.40.003334
26. Pan, X. and M. A. Anastasio, "On a limited-view reconstruction problem in diffraction tomography," IEEE Trans. Med. Imag., Vol. 21, No. 4, 413-416, 2002.
doi:10.1109/TMI.2002.1000265
27. Paladhi, P. R., et al., "Data redundancy in diffraction tomography," 31st International Review of Progress in Applied Computational Electromagnetics (ACES), Vol. 31, No. 4, 1-2, 2015.
28. Tsihrintzis, G. A. and A. J. Devaney, "Stochastic diffraction tomography: Theory and computer simulation," Signal Processing, Vol. 30, No. 1, 49-64, 1993.
doi:10.1016/0165-1684(93)90050-K
29. Anastasio, M. A. and X. Pan, "Investigation of the noise properties of a new class of reconstruction methods in diffraction tomography," International Jour. of Imaging Sys. and Tech., Vol. 10, No. 6, 437-446, 1999.
doi:10.1002/(SICI)1098-1098(1999)10:6<437::AID-IMA5>3.0.CO;2-0