Vol. 66
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2016-02-09
Improved Backpropagation Algorithms by Exploiting Data Redundancy in Limited-Angle Diffraction Tomography
By
Progress In Electromagnetics Research B, Vol. 66, 1-13, 2016
Abstract
Filtered backpropagation (FBPP) is a well-known technique used in Diffraction Tomography (DT). For accurate reconstruction of a complex-valued image using FBPP, full 360˚ angular coverage is necessary. However, it has been shown that by exploiting inherent redundancies in the projection data, accurate reconstruction is possible with 270˚ coverage. This is called the minimal-scan angle range. This is done by applying weighting functions (or filters) on projection data of the object to eliminate the redundancies. There could be many general weight functions. These are all equivalent at 270˚ coverage but would perform differently at lower angular coverages and in presence of noise. This paper presents a generalized mathematical framework to generate weight functions for exploiting data redundancy. Further, a comparative analysis of different filters when angular coverage is lower than minimal-scan angle of 270˚ is presented. Simulation studies have been done to find optimum weight filters for sub-minimal angular coverage. The optimum weights generate images comparable to a full 360˚ coverage FBPP reconstruction. Performance of the filters in the presence of noise is also analyzed. These fast and deterministic algorithms are capable of correctly reconstructing complex valued images even at angular coverage of 200˚ while still under the FBPP regime.
Citation
Pavel Roy Paladhi, Ashoke Sinha, Amin Tayebi, Lalita Udpa, and Satish S. Udpa, "Improved Backpropagation Algorithms by Exploiting Data Redundancy in Limited-Angle Diffraction Tomography," Progress In Electromagnetics Research B, Vol. 66, 1-13, 2016.
doi:10.2528/PIERB15120204
References

1. Devaney, A., "A filtered backpropagation algorithm for diffraction tomography," Ultrasonic Imaging, Vol. 4, No. 4, 336-350, 1982.
doi:10.1177/016173468200400404

2. Kak, A. C. and M. Slaney, "Tomographic imaging with diffracting sources," Principles of Computerized Tomographic Imaging, IEEE Press, New York, 1988.

3. Semenov, S., "Microwave tomography: Review of the progress towards clinical applications," Phil. Trans. of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 367, No. 1900, 3021-3042, 2009.
doi:10.1098/rsta.2009.0092

4. Ritzwoller, M. H., et al., "Global surface wave diffraction tomography," Jour. of Geophys. Res. Solid Earth, Vol. 107, No. B12, ESE 4-1-ESE 4-13, 2002.
doi:10.1029/2002JB001777

5. Gorski, W. and W. Osten, "Tomographic imaging of photonic crystal fibers," Optics Letters, Vol. 32, No. 14, 1977-1979, 2006.
doi:10.1364/OL.32.001977

6. Sung, Y., et al., "Optical diffraction tomography for high resolution live cell imaging," Opt. Express, Vol. 17, No. 1, 266-277, 2009.
doi:10.1364/OE.17.000266

7. Kostencka, J., et al., "Accurate approach to capillary-supported optical diffraction tomography," Opt. Express, Vol. 23, No. 6, 7908-7923, 2015.
doi:10.1364/OE.23.007908

8. Catapano, I., L. Di Donato, L. Crocco, O. M. Bucci, A. F. Morabito, T. Isernia, and R. Massa, "On quantitative microwave tomography of female breast," Progress In Electromagnetics Research, Vol. 97, 75-93, 2009.
doi:10.2528/PIER09080604

9. Drogoudis, D. G., G. A. Kyriacou, and J. N. Sahalos, "Microwave tomography employing an adjoint network based sensitivity matrix," Progress In Electromagnetics Research, Vol. 94, 213-242, 2009.
doi:10.2528/PIER09060808

10. Baran, A., D. J. Kurrant, A. Zakaria, E. C. Fear, and J. LoVetri, "Breast imaging using microwave tomography with radar-based tissue-regions estimation," Progress In Electromagnetics Research, Vol. 149, 161-171, 2014.
doi:10.2528/PIER14080606

11. Bayat, N. and P. Mojabi, "The effect of antenna incident field distribution on microwave tomography reconstruction," Progress In Electromagnetics Research, Vol. 145, 153-161, 2014.
doi:10.2528/PIER14021905

12. Tayebi, A., et al., "Design and development of an electrically-controlled beam steering mirror for microwave tomography," AIP Conf. Proc. QNDE, Vol. 1650, No. 1, 501-508, 2015.
doi:10.1063/1.4914647

13. Tayebi, A., et al., "Dynamic beam shaping using a dual-band electronically tunable reflectarray antenna," IEEE Trans. on Antennas and Propagation, Vol. 63, No. 10, 4534-4539, 2015.
doi:10.1109/TAP.2015.2456939

14. Paladhi, P. R., et al., "Reconstruction algorithm for limited-angle diffraction tomography for microwave NDE," AIP Conf. Proc. QNDE, Vol. 1581, No. 1, 1544-1551, 2014.
doi:10.1063/1.4865007

15. Ren, X. Z., et al., "A three-dimensional imaging algorithm for tomography SAR," IEEE International Geoscience and Remote Sensing Symposium 2009, 184-187, Cape Town, South Africa, 2009.

16. Ren, X.-Z., L. H. Qiao, and Y. Qin, "A three-dimensional imaging algorithm for tomography SAR based on improved interpolated array transform," Progress In Electromagnetics Research, Vol. 120, 181-193, 2011.

17. Capozzoli, A., C. Curcio, and A. Liseno, "Fast GPU-based interpolation for SAR backprojection," Progress In Electromagnetics Research, Vol. 133, 259-283, 2013.
doi:10.2528/PIER12071909

18. Tsihrintzis, G. A. and A. J. Devaney, "Higher-order (nonlinear) diffraction tomography: Reconstruction algorithms and computer simulation," IEEE Trans. Image Proc., Vol. 9, No. 9, 1560-1572, 2000.
doi:10.1109/83.862637

19. Vouldis, A. T., et al., "Three-dimensional diffraction tomography using ¯ltered backpropagation and multiple illumination planes," IEEE Trans. Instr. and Meas., Vol. 55, No. 6, 1975-1984, 2006.
doi:10.1109/TIM.2006.884276

20. Ayasso, H., et al., "Bayesian inversion for optical diffraction tomography," Jour. Modern. Optics, Vol. 57, No. 9, 765-776, 2010.
doi:10.1080/09500340903564702

21. Sung, Y. and R. R. Dasari, "Deterministic regularization of three-dimensional optical diffraction tomography," JOSA A, Vol. 28, No. 8, 1554-1561, 2011.
doi:10.1364/JOSAA.28.001554

22. Devaney, A., "The limited-view problem in diffraction tomography," Inverse Problems, Vol. 5, No. 4, 501-521, 1989.
doi:10.1088/0266-5611/5/4/006

23. Pan, A. and M. A. Anastasio, "Minimal-scan filtered backpropagation algorithms for diffraction tomography," JOSA A, Vol. 16, No. 12, 2896-2903, 1999.
doi:10.1364/JOSAA.16.002896

24. Pan, X., "Unified reconstruction theory for diffraction tomography, with consideration of noise control," JOSA A, Vol. 15, No. 9, 2312-2326, 1998.
doi:10.1364/JOSAA.15.002312

25. Anastasio, M. A. and X. Pan, "Full-and minimal-scan reconstruction algorithms for fan-beam diffraction tomography," Applied Optics, Vol. 40, No. 20, 3334-3345, 2001.
doi:10.1364/AO.40.003334

26. Pan, X. and M. A. Anastasio, "On a limited-view reconstruction problem in diffraction tomography," IEEE Trans. Med. Imag., Vol. 21, No. 4, 413-416, 2002.
doi:10.1109/TMI.2002.1000265

27. Paladhi, P. R., et al., "Data redundancy in diffraction tomography," 31st International Review of Progress in Applied Computational Electromagnetics (ACES), Vol. 31, No. 4, 1-2, 2015.

28. Tsihrintzis, G. A. and A. J. Devaney, "Stochastic diffraction tomography: Theory and computer simulation," Signal Processing, Vol. 30, No. 1, 49-64, 1993.
doi:10.1016/0165-1684(93)90050-K

29. Anastasio, M. A. and X. Pan, "Investigation of the noise properties of a new class of reconstruction methods in diffraction tomography," International Jour. of Imaging Sys. and Tech., Vol. 10, No. 6, 437-446, 1999.
doi:10.1002/(SICI)1098-1098(1999)10:6<437::AID-IMA5>3.0.CO;2-0