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Improved Backpropagation Algorithms by Exploiting Data
Redundancy in Limited-Angle Diffraction Tomography
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Abstract—Filtered backpropagation (FBPP) is a well-known technique used in Diffraction
Tomography (DT). For accurate reconstruction of a complex-valued image using FBPP, full 360◦ angular
coverage is necessary. However, it has been shown that by exploiting inherent redundancies in the
projection data, accurate reconstruction is possible with 270◦ coverage. This is called the minimal-scan
angle range. This is done by applying weighting functions (or filters) on projection data of the object to
eliminate the redundancies. There could be many general weight functions. These are all equivalent at
270◦ coverage but would perform differently at lower angular coverages and in presence of noise. This
paper presents a generalized mathematical framework to generate weight functions for exploiting data
redundancy. Further, a comparative analysis of different filters when angular coverage is lower than
minimal-scan angle of 270◦ is presented. Simulation studies have been done to find optimum weight
filters for sub-minimal angular coverage. The optimum weights generate images comparable to a full
360◦ coverage FBPP reconstruction. Performance of the filters in the presence of noise is also analyzed.
These fast and deterministic algorithms are capable of correctly reconstructing complex valued images
even at angular coverage of 200◦ while still under the FBPP regime.

1. INTRODUCTION

Diffraction tomography (DT) is a popular imaging modality [1, 2] used in a variety of applications such
as medical imaging, non-destructive evaluation of materials, structural health monitoring, geophysics
etc. [3, 4]. In the domain of optical imaging, this method has been explored in depth viz. optical
diffraction tomography (ODT) with multi-disciplinary applications [5–7]. DT is a broad imaging
technique of which ultrasound and microwave tomographic imaging are sub-classes. It is a comprehensive
way of characterizing the complex valued object-function of the test object. The scheme is applicable
to microwave tomography of tissue samples. It has been of great interest in tomography of human
breast to identify malignant tumours [8–14]. The high contrast between healthy and cancerous breast
tissue provides opportunities for clearly identifying malignancies within breast tissue. The contrast is
much higher than in case of X-rays and hence microwave tomography is advantageous both in terms of
true detection and radiation damage from X-rays. Further applications are in fields of SAR imaging.
Various backprojection techniques have been explored for use in radar imaging and modified for better
reconstructions [15–17]. Faster implementations for backprojections algorithms are also being intensely
explored, e.g., [17]. Again, radar based methods have been combined with microwave tomography
to generate higher resolutions for medical imaging [10]. Thus, any improvement in the traditional
backpropagation techniques is of potential interest across multiple disciplines. This paper shows an
approach to improve direct FBPP reconstruction of complex-valued objects at lower angular coverages
than traditional requirements.
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In the presence of weak scatterers, assuming the Born or Rytov approximations [2], the Fourier
Diffraction Projection theorem (FDP) is applied. The FDP relates the scattered field data from
the Region of Interest (ROI) to the 2D-Fourier Space of the ROI. Devaney developed the filtered
backpropagation (FBPP) algorithm for this configuration to reconstruct a low-pass filtered image of
the object function [1]. The traditional backpropagation technique requires projection data from [0, 2π]
angular coverage for accurate image reconstruction of a complex image. Even though the formulation
applies to weak scatterers, it has found a number of applications and since its introduction, a steady
research focus has been maintained to increase the extent of usage for backpropagation-like algorithms
for DT and making them more general in applicability, e.g., [18, 19]. A major challenge in many
real world situations is that projection measurements cannot be gathered over full 360◦ view around
the test object. With limited access to the object and decrease in angular coverage, the available
data in the Fourier space decreases. Reconstruction from this partial Fourier space data leads to
many artifacts and loss of important image features. Hence alternate schemes are needed for image
reconstruction from limited angular coverage projection data. For highly sparse data or limited angular
access various minimization, regularization, estimation techniques and statistical approaches are being
successfully explored to make the reconstruction algorithms more robust to sparse and noisy data,
e.g., [20, 21]. However, generally these are iterative methods and the total computation time depends
on the convergence rate of the algorithm. A single step method would be always quicker provided it can
handle the limited availability of data. In [23–26], a novel alternative approach for moderately limited
angular access was introduced. It was shown that using inherent redundancies in the projection data
from the conventional setup, exact reconstruction is possible with data from [0, 3π/2] coverage. For lower
angular coverages, the algorithm results in significant distortions. In this paper we explore a technique
that efficiently uses the redundancies in the Fourier space data from the conventional setup [27]. This
technique can reconstruct better images (than regular FBPP) effectively over any range between π
to 3π/2. This is a crucial development, as the demands on angular access for complex valued object
reconstruction is lowered considerably. This paper proposes to use projection datasets optimally to get
enhanced reconstructions from lower angular coverages. Also, this is a direct reconstruction method
which does not employ any error minimization algorithms and hence is faster and accurate over angular
coverages between 180◦–270◦.

The paper is organized as follows: Section 2 gives a short background of the FDP and FBPP
algorithms and explains the minimal-scan complete dataset proposed in [23] and how equivalent systems
of backpropagation algorithms can be generated. Section 3 introduces methods to generate weight
function classes of backpropagation algorithms which can give better reconstruction than regular FBPP
in the angular coverage range where the redundancy can still be exploited, i.e., between 180◦–270◦.
Section 4 presents results from different backpropagation classes and analyses the relative performances
at angular coverages below 270◦.

2. FBPP & THE MINIMAL SCAN REQUIREMENT IN DT

The fundamental theory underlying 2D-DT is the FDP. This relates the scattered field data from
the Region of Interest (ROI) due to incident plane waves to the 2D-Fourier space of the ROI [2].
The traditional 2D-configuration is shown in Fig. 1. Let the object o(x, y) be illuminated with a
monochromatic plane wave of frequency ν0. Let the wave be incident at an angle φ to the horizontal
axis. Then, the 1D Fourier Transform (FT) of the scattered field measured along the straight line η = l
in the co-ordinate system (ξ, η) gives the values of the 2D transform of the object O(νx, νy) along a
semi-circular arc in the frequency domain. As shown in the right half of Fig. 1, this arc will be tilted
at an angle φ. The scattered field data and the object function are related by the following equation:

U(ν, l) =
j
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ν2
0−ν2lO
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where U(ν, l) represents 1D FT of the scattered field, u(ξ, η) under Born approximation (measured at
line η = l), and ν lies in the range [−ν0, ν0].

Devaney developed the well-known filtered backpropagation method in [1]. In polar coordinates,
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(a) (b)

Figure 1. (a) Classical scan configuration of 2D DT and (b) relation of scattered field data with the
2D Fourier space of the objective function.

as presented in [23], the backpropagation integral takes the form:

a(r, θ) =
∫ 2π

φ=0

∫ ν0

νm=−ν0

ν0

ν ′ |νm|M(νm, φ) · e[j2πνm cos(φ−α−θ)]dνmdφ (2)

In Eq. (2), a(r, θ) is the objective function being reconstructed in polar spatial coordinates (r, θ),
ν0 the frequency of the incident monochromatic plane wave and φ being the incidence angle, M(νm, φ)
a modified 1D FT of the scattered data, defined as

M(νm, φ) = U(νm, φ)
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Without loss of generality, α could be further simplified to

α =
1
2

arcsin
(

νm

ν0

)
. (3c)

In order to reconstruct a complex object accurately, a full knowledge of M(νm, φ) in the range [0, 2π]
is necessary to perform the integration in Eq. (2), [22].

2.1. Minimal Scan FBPP

The Fourier space redundancies from standard 2D-DT projection data and reconstruction method from
lower coverage utilizing the redundancy are now explained. Consider the two arcs OA and OB in Fig. 1.
The two arcs individually traverse the transform space (i.e., the Fourier space) as the interrogating
wave angle changes between [0, 2π]. Now consider their traversals in the Fourier space individually
for angular coverage of [0, 3π/2]. This is illustrated in Fig. 2 below. Individually each half does an
incomplete traversal of the Fourier space as shown in Figs. 2(a) and 2(b). However, if superimposed, as
seen in Fig. 2(c), the entire Fourier space is covered with some areas of overlap. The key point is that at
270◦ there is in effect, a complete coverage of the Fourier space. This scan range of [0, 270◦] is referred
to as the minimal scan angle and is the minimal angular coverage required for exact reconstruction [23].

To better appreciate the principle, the Fourier space domain is re-plotted in a modified coordinate
system, where the spatial frequency is plotted along x-axis and the angular coverage along y-axis.
Physically this new coordinate system can be viewed as ‘straightening’ the arcs AOB from each
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(a) (b)

(d)(c)

Figure 2. (a) Fourier space coverage for 270◦ angular access by segment OB in Fig. 1(b) same for
segment OA of Fig. 1. (c) Superposition of the two coverages from (a) and (b). (d) The Fourier data-
space in alternate co-ordinate system with angular coverage along y-axis and the wave number along
x-axis.

projection and stacking them up on top of each other sequentially. In this layout, the entire Fourier
dataspace can be divided into four sub-regions A, B, C and D as shown in Fig. 2(d). The boundaries
for the four regions can be expressed as A = [|νm| ≤ ν0, 0 ≤ φ < 2α + π/2], B = [|νm| ≤ ν0, π/2 + 2α ≤
φ < 2α + π], C = [|νm| ≤ ν0, π + 2α ≤ φ < 3π/2] and D = [|νm| ≤ ν0, 3π/2 ≤ φ < 2π]. As seen in (2c),
α is a function of νm and so the regions have nonlinear boundaries.

From FDP theorem the following periodicity holds [24]:

M(νm, φ) = M(−νm, φ + π − 2α) (4)

This also implies that for every point in region A (or B), there is a point of identical value in region C
(or D). Thus, the knowledge of M(νm, φ) in regions A and B, makes information in C and D redundant.
This redundancy can be handled by normalizing the dataspace using appropriate weight filters. The
weighted dataset M ′(νm, φ) can be defined as M ′(νm, φ) = w(νm, φ)M(νm, φ), where w(νm, φ) satisfies
the condition

w(νm, φ) + w(−νm, φ + π − 2α) = 1. (5)

It should be noted that since region D is unavailable in a 270◦ coverage we set w(νm, φ) = 0 in region
D and correspondingly w(νm, φ) = 1 in region B. For regions A and C, any weight functions are
valid as long as they satisfy Eq. (5). Using the weighted dataset M ′(νm, φ) we can apply the regular
backpropagation algorithm for reconstruction. This is called Minimal-Scan Filtered Backpropagation
(MS-FBPP) which involves evaluating the following integral

aW (r, θ) =
1
2

∫ 3π/2

φ=0

∫ ν0

νm=−ν0

ν0

ν ′ |νm|M ′(νm, φ) · e[j2πνm cos(φ−α−θ)]dνmdφ. (6)
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This integral can, in theory, exactly reconstruct an image from a 270◦ angular coverage by utilizing
data redundancy in projection data. The weights w(νm, φ) can then be used to define classes of
backpropagation algorithms for image reconstruction. An example of weight functions introduced in [23]
is given in equation below:

w(νm, φ) =
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[
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]
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sin2

[
π

4
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π/4 − α

]
, in C,

0, in D.

(7)

This will be used as a reference later on in Section 4 for comparison with the weight functions that are
proposed in this paper. The filter of Eq. (7) will be referred to as sine-squared filter in this paper. This is
a very elegant and simple filter designed to have continuity across the boundaries between regions A, B,
C and D. To demonstrate the efficacy of MS-FBPP, a sample reconstruction is performed on a Shepp-
Logan type phantom with complex parameter distribution. The real part of the phantom is shown in
Fig. 3(a) and the imaginary part in Fig. 4(a). Reconstruction from regular FBPP and MS-FBPP using
weights of (7) are given in Fig. 3 and Fig. 4. The images show the MS-FBPP algorithms capable of
generating accurate reconstructions from 270◦ (equivalent to full coverage), whereas the regular FBPP
image shows considerable distortion at 270◦.

Weight filters which are discontinuous across boundaries of the four regions in Fig. 2(d) can give
rise to artifacts, especially in the case of discrete data. Further, for each class of weights, its distribution
in frequency space of Fig. 2(d) also determines the performance when the available coverage is below
270◦. This is because, C and D are complementary to regions A and B respectively. An efficient weight
function set would be that which spans most of the regions A and B, thus limiting the requirement to
access regions C and D. In effect such weights can generate good reconstructions even from angular
coverages below 270◦. The next section explains a systematic approach to generate general classes of
weight functions.

(a) (b)

(d)(c)

Figure 3. Demonstration of the MS-FBPP
concept, (a) real part of original image, (b) FBPP
reconstruction from 360◦ coverage, (c) FBPP
reconstruction from 270◦ coverage and (d) MS-
FBPP reconstruction from 270◦ coverage.

(a) (b)

(c) (d)

Figure 4. Demonstration of the MS-FBPP
concept, (a) imaginary part of original image,
(b) FBPP reconstruction from 360◦ coverage, (c)
FBPP reconstruction from 270◦ coverage and (d)
MS-FBPP reconstruction from 270◦ coverage.
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3. GENERATION OF EFFICIENT WEIGHT FUNCTIONS

From previous section, we see that the weights in regions B and D are 1 and 0 respectively. Notice that
weights in region C can be generated from weights of region A, because for any point (νm, φ) in region C,
the point (−νm, φ+π−2α) in A is equivalent due to (4), and we get w(νm, φ) = 1−w(−νm, φ+π−2α),
using Eq. (5). Thus it is sufficient to generate weights for the region A only.

Furthermore from Eq. (5), the non-negative weights are bounded above by 1. So in region A, for
any fixed νm, the function w(νm, ·) =: F (·) is defined on [0, 2α + π/2], and takes values between 0 and
1. However it is desirable to have weights which are continuous at the boundaries between two regions.
Weights which are discontinuous at the boundaries will generate artifacts in case of discrete datasets as
noticed in [23].

Here we propose an approach to generate the weights, by using cumulative distribution functions
(cdf) to model F (·), which are guaranteed to be bounded within 0 and 1. To obtain continuous weights,
we use continuous F with

F (0) = 0, and F (2α + π/2) = 1. (8)
This will ensure that weights are continuous at the boundary between regions A and B, and consequently
at the boundaries between regions B and C, and C and D. This approach would allow us to choose
weights from a no. of cdfs. In this article, we primarily use beta-cdf to generate weights. The standard
beta-cdf is defined as:

F (x|a, b) =
∫ x

−∞
f(t|a, b)dt. (9)

where a > 0, b > 0, and f is the standard beta probability density function:

f(t|a, b) =

⎧⎨
⎩

1
B(a, b)

ta−1(1 − t)b−1, 0 ≤ t ≤ 1,

0, otherwise,
(10)

and B(a, b) =
∫ 1
0 ta−1(1 − t)b−1dt. We obtain a family of beta-cdf’s by changing values of a and b

in Eq. (10), as shown in Fig. 5. Notice that the standard beta-cdf has support [0, 1], while in region A

Figure 5. Beta-cdf plots for different values of
the parameters a and b.

Figure 6. Images showing weight distributions in
Fourier domain generated by parametric variation
of the beta-cdf (using the parameters shown in
Fig. 5). Frequency is plotted along abscissa and
angular coverage along ordinate.
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for a fixed νm, we need to define weights for φ ∈ [0, 2α + π/2]. This can be achieved by substituting
x = φ

2α+π/2 in Eq. (9). The corresponding weight profiles in the frequency domain are shown in Fig. 6.
The plots in Fig. 5 can be used to understand how the weights will be distributed in Regions A and

C. Fig. 6 gives useful insight on choosing optimal parameter values. For example, with combinations
a = 2, b = 5 or a = 6, b = 1, region A is not well covered, whereas for a = 0.4, b = 6, region A has been
almost fully covered with near unity weights leaving Region C with mostly near-zero weights. This
combination is expected to better utilize data redundancy than the other combinations shown in Fig. 5.
This can be further illustrated through Fig. 7 and Fig. 8. Fig. 7 shows some weight distributions in
the Fourier space (in the alternative co-ordinate system). The beta-cdf parameters used to generate
these weights are shown in inset white text. Fig. 8 shows the reconstructed real parts of the images by
using these weights. Reconstruction was performed from sub-minimal angular coverage of 200◦. The
weights which cover region A more completely also give better reconstructions. It should be noted that
especially for coverages lower than 270◦, we receive less information from C, hence an optimum weight
function should span most of region A with near unit weightage. Since the weights are continuous across
the boundaries of the regions, the transition from zero to unity should be adequate to retain as much
information as possible within region A but also not too abrupt to minimize generation of artifacts in
case of discrete datasets. In this paper the authors demonstrate the efficacy of using cdf based weights
in image reconstruction at sub-minimal angular coverage. To do this, good parameter values were
heuristically determined in the following manner: for the beta-cdf, a parametric sweep over the range
of a ∈ [0.2, 3], b ∈ [1, 6] was performed and the corresponding weight distributions were generated.
Reconstructions were performed with these weights for a sub-minimal coverage of 200◦. The weight
combination which gave the least distortion in the reconstruction and maintained highest correlation
with the original image was chosen as the optimum set. Within this range, the parameter combination
a = 0.4, b = 6 gave best results and is used for image reconstruction in the next section.

Similar approach can be used to generate weight functions from other cumulative distribution
functions as well, for instance with the gamma-cdf. However, since the gamma distribution has

(a) (b)

(c) (d)

Figure 7. Images showing weight distributions in
Fourier domain generated by parametric variation
of the beta-cdf. The parameters a and b used
for each weight distribution are inset in each plot.
Frequency is plotted along abscissa and angular
coverage along ordinate.

(a) (b)

(c) (d)

Figure 8. Corresponding reconstructions from
using the weight distributions in Fig. 7.
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unbounded support, a suitable transformation of the argument is required to ensure that the weights are
constructed with continuity properties at the boundaries as discussed above. Details about constructing
the weights with gamma-cdf are described in the Appendix. For this case, the parameters were varied
in the range a ∈ [0.1, 3.1], b ∈ [0.1, 3.1]. The best parameter set found from this range was a = 2.1,
b = 0.1. In this paper, results from beta and gamma distributions using these optimum parameters for
each distribution will be presented and compared with the results from weights given in Eq. (7).

4. RESULTS

This paper presents results from simulated projection data for DT valid under the Born approximation.
The test image is complex. Both the real and imaginary parts of the image are, in effect, modified
versions of the Shepp-Logan phantom, a standard model used to validate computed tomography
algorithms. The real and imaginary parts of the test image are shown in Figs. 3(a) and 4(a). The
projection data from the phantom was computed following [23, 24]. The image matrix is 128 × 128
pixels with pixel size of λ/8. The image has an area of 16λ × 16λ. The objective of this paper was to
define a procedure to generate optimum weights which can exploit the redundancy for angular coverages
below 270◦ and up to 180◦, where redundancy is still present in the projection data.

4.1. Noiseless Reconstruction

Proceeding in the manner described in the previous section to generate weights, the following optimum
parameters for different cdfs were used: for beta-cdf, a = 0.4, b = 6; for gamma-cdf, a = 2.1, b = 0.1.
Reconstructed images have been plotted from regular FBPP and MS-FBPP using different weight
functions for coverages 270◦ and 200◦ (an example of sub-minimal angular coverage). Both real and
imaginary parts are shown in Figs. 9 and 10 respectively. The reconstructions show the beta-cdf and
gamma-cdf based weights generate a very stable reconstruction even in lower angular coverage of 200◦,
with beta-cdf performing slightly better overall.

To compare the performance of different MS-FBPP algorithms quantitatively, we use their Mean-
Absolute-Error (MAE) with respect to the original image. The MAE is calculated as the absolute
mean pixel-by-pixel difference between the original and reconstructed image: MAE = 1

n

∑ |imgorig(i)−
imgrecon(i)|, where imgorig(i) is the ith pixel in the original image and imgrecon(i), the ith pixel in the
reconstructed image and n is the total number of pixels in the image. The errors in real and imaginary
parts of image were calculated separately. At 200◦ coverage, for the real part of the image, the beta-
cdf based reconstruction had a 30.77% lower error than regular FBPP, while the gamma-cdf based
reconstruction yielded a 29.11% lower error. A similar trend is seen for the imaginary part of the image.
The sine-squared based weights give accurate reconstructions at 270◦, but below 270◦ they progressively
deteriorate. These are clearly not optimum choices for coverage < 270◦. For example, at 200◦ coverage,
the quality of reconstruction degrades for both the regular FBPP and sine-squared weighted FBPP.
However, the latter has a higher error than the regular FBPP reconstruction (2.46% higher in real part
of image). A more detailed error-analysis has been done with noisy data in the next subsection. Below
180◦ coverage, the redundancy disappears and using weights alone, in principle cannot produce a better
reconstruction than regular FBPP. So, reconstructed images are not shown for further lower coverage.
However, it should be noted that for these lower coverages, reconstruction from un-optimized weights
will generate higher errors than regular FBPP. This is also evident from the sine-squared weights based
reconstructions for sub-minimal coverages. The optimized cdf based weights perform much better than
both the sine-squared weights and regular FBPP.

4.2. Reconstruction with Noisy Data

Noise is an integral part of any measurement system. In a DT setup, noise may arise from random
inhomogeneities in medium or may be introduced by the experimental procedure. To account for
these, noisy reconstruction has been modeled as a stochastic process in literature before [28, 29].
Reconstruction from noisy data was necessary to examine the reliability of these algorithms when
applied to practical systems. The MS-FBPP algorithms are expected to respond to noisy data models



Progress In Electromagnetics Research B, Vol. 66, 2016 9

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9. Reconstructed real part from complex
test image under noiseless conditions. The left
column shows reconstruction from 270◦ coverage
and right column shows reconstruction from 200◦
coverage. (a), (b) using regular FBPP, (c), (d)
using sine-sq weights, (e), (f) using gamma-cdf
weights, (g), (h) using beta-cdf weights.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10. Reconstructed imaginary part of the
test image under noiseless conditions. The left
column shows reconstruction from 270◦ coverage
and right column shows reconstruction from 200◦
coverage. (a), (b) using regular FBPP, (c), (d)
using sine-sq weights, (e), (f) using gamma-cdf
weights, (g), (h) using beta-cdf weights.

differently. To consider the effect of all noise sources, it was assumed as sufficient to consider a white
Gaussian noise distribution in the scattered field data [24]. An additive white Gaussian noise (AWGN)
with different variances has been injected to the analytically computed projection data to give different
noise levels. To observe the non-uniform propagation of errors under noisy data [24, 29], we compared
the reconstruction from the weighted MS-FBPP algorithms with regular FBPP using the projection
data injected with 3-dB AWGN. The reconstructed images from noisy data using beta-cdf weights for
different angular coverages in the range of [200◦, 270◦] are given in Fig. 11 and Fig. 12. We use here
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(a) (b)

(c) (d)

Figure 11. Reconstruction of real part of image
from 3dB awgn projection data using beta-cdf
weights for angular coverages, (a) 270◦, (b) 250◦,
(c) 220◦, (d) 200◦.

(a) (b)

(c) (d)

Figure 12. Reconstruction of imaginary part of
image from 3dB awgn projection data using beta-
cdf weights for angular coverages, (a) 270◦, (b)
250◦, (c) 220◦, (d) 200◦.

Figure 13. MAE calculated at different
coverages for real part of reconstructed image
with regular FBPP and MS-FBPP using different
weights.

Figure 14. MAE calculated likewise Fig. 13 for
imaginary part of reconstructed image.

weights based on beta-cdf with a = 0.4, b = 6, which earlier gave best results with noiseless data. The
reconstructions show robustness of the algorithm to noise levels that could be reasonably expected from
good experimental data.

Figure 11 and Fig. 12 show that the beta-cdf based weights are capable of maintaining all the
features and without any artifacts up to 220◦. The reconstruction at 200◦ is also almost distortionless.
The responses are stable and the images are not affected noticeably due to the noise injection as seen
in these figures.

The MAE calculated for the different weights at different angular coverages are plotted in Fig. 13
and Fig. 14. The plots show that as the coverage goes further below 270◦, the beta-cdf and gamma-cdf
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Figure 15. Percentage improvement of MAE
from different weights over regular FBPP at
different coverages for real part of reconstructed
image.

Figure 16. Percentage improvement of MAE
likewise Fig. 15 for imaginary part of recon-
structed image.

weights are able to generate MAEs which remain lower than regular FBPP and are very steady up to
200◦. For the beta-cdf based reconstruction, as the coverage decreases from 270◦ to 200◦, the value
of MAE increases by only 2.33% in the real part and 1.45% in the imaginary part of the image. For
gamma-cdf based reconstruction, the numbers are 4.31% and 2.64% respectively. For coverages below
200◦, as the redundancy is lost, these two MAEs increase and slowly converge towards the MAE of a
regular FBPP reconstruction around 180◦. For the sine-squared based weights, the MAEs are almost
equal to the other two weights in the interval [250◦, 270◦], but rapidly increases as the coverage reduces,
and become greater than the regular FBPP and other two MS-FBPP reconstructions. At 200◦ coverage,
the MAE of the real part of the image increases by as much as 46.05% of its value at 270◦ coverage and
that of the imaginary part by 48.62%.

The MAE plots for the regular FBPP algorithm in Fig. 13 and Fig. 14 may be counterintuitive
at the first look. This is because the error increases as the angular coverage increases from 180◦ to
270◦. However, it should be noted that starting from 180◦ coverage and above, there are regions in the
Fourier space where there is overlap from the two halves OA and OB of the semi-circular arc AOB in
Fig. 1. The regular FBPP doesn’t apply weights to the dataspace to account for these partial overlaps
and hence gives higher errors in reconstruction. At 360◦ coverage, as there is complete coverage by
both the arcs OA and OB, weighting the dataspace is not required. Following this, it is found that
error increases from 180◦ coverage to a maximum at 270◦, where there is maximum asymmetry with
respect to overlapping coverages in Fourier space by the two half semi-circles, OA and OB. Weighting
becomes most important at 270◦. Beyond that, the importance decreases again and vanishes at 360◦
coverage. For this reason, an error increase is seen between 180◦ and 270◦ coverage. The solution to
this problem in that coverage range is to weight the projection dataspace appropriately before applying
the backpropagation algorithm.

The percentage improvements of MAE for all the three filter classes with respect to the regular
FBPP are plotted in Fig. 15 and Fig. 16. All the weights show maximum improvement at 270◦, and
it decreases as the coverage gets more limited. The degradation of sine-squared filters is much greater
than the cdf based filters. The plots show that at 180◦, with the disappearance of the redundancy
within the projection data, the MAEs for regular FBPP and that of beta-weighted MS-FBPP converge.
In contrast, for the sine-squared weights, the MAE steadily increases and becomes greater than the
MAE from regular FBPP. This is expected and demonstrates the effectiveness of the beta-cdf based
weights as an optimal choice. The gamma-cdf based reconstruction behaves similarly with a slightly
higher MAE (1.66% higher than beta-cdf reconstruction in real part of image and 1.32% higher for the
imaginary part of the image at 200◦ coverage).
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5. CONCLUSION

In this paper, a new approach to exploit data redundancy within the traditional 2D DT setup has
been explored. Using cumulative distribution functions, especially the beta-cdf, it was shown that
distortionless reconstructions of complex-valued object functions are possible even at angular coverage
of 200◦. The advantages of this observation are numerous. The major benefit is that it reduces the
angular scanning requirements for accurate reconstructions. This also implies shorter access times for
collecting relevant projection data. In medical applications, this can mean a lower amount of exposure
to the interrogating energy and also, fewer artifacts due to temporal variations caused by movements of
the patient. For still lower coverages (< 180◦), the redundancy in the tomographic dataset vanishes and
alternate approaches such as total variation (TV) minimization, compressed sensing, etc. are explored
for application to DT setups. Combining these techniques with MS-FBPP could be a scope of future
research work. In this paper, results have been validated through simulated data in the case of plane
wave excitation but can be extended to the fanbeam geometry as well. This is also of significance to
medical imaging. Studies with fanbeam geometry and the performance of these algorithms with real
experimental data will be explored in the future work of this study.

APPENDIX A. GAMMA-CDF BASED WEIGHT GENERATION

The gamma-cdf is defined as F (x) =
∫ x
−∞ f(t)dt, where f is the gamma probability density function

defined as:

f(t|a, b) =

⎧⎨
⎩

1
Γ(a)ba

ta−1e−t/b, t ≥ 0,

0, t < 0.
(A1)

where a > 0 and b > 0 are parameters, and Γ(a) =
∫ ∞
0 ta−1e−tdt is standard gamma-function. As we

can see, gamma-cdf has support on [0, ∞), F (2α + π/2) < 1, which does not meet Eq. (9). Therefore,
weights created using gamma-cdf in its original form will be discontinuous at the boundary between A
and B, and consequently at the boundary between B and C. One possible way to get a continuous
weight is by inputting a transformed argument. So for fixed νm ∈ [−ν0, ν0], we shall construct weights
by using

w(νm, φ) = F

(
tan

(
π

2
φ

2α + π/2

))
, (A2)

where F is the gamma-cdf as defined above.
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