1. Butterfielf, J. and J. Earman, Philosophy of Physics, Part A, Elsevier, 2007.
2. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402
3. Atwater, H. A. and A. Polman, "Plasmonics for improved photovoltaic devices," Nature Mater., Vol. 9, 205, 2010.
doi:10.1038/nmat2629
4. Schuller, J. A., E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, "Plasmonics for extreme light concentration and manipulation," Nature Mater., Vol. 9, 193, 2010.
doi:10.1038/nmat2630
5. Pendry, J. B., "Controlling light on the nanoscale (invited review)," Progress In Electromagnetics Research, Vol. 147, 117-126, 2014.
doi:10.2528/PIER14090305
6. Ward, A. J. and J. B. Pendry, "Refraction and geometry in Maxwell's equations," Journal of Modern Optics, Vol. 43, 773, 1996.
doi:10.1080/09500349608232782
7. Schurig, D., J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Optics Express, Vol. 14, 9794, 2006.
doi:10.1364/OE.14.009794
8. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780, 2006.
doi:10.1126/science.1125907
9. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, 1777, 2006.
doi:10.1126/science.1126493
10. Sheng, C., H. Liu, Y.Wang, S. N. Zhu, and D. A. Genov, "Trapping light by mimicking gravitational lensing," Nat. Photonics., Vol. 7, 902, 2013.
doi:10.1038/nphoton.2013.247
11. Genov, D. A., "Optical black-hole analogues," Nat. Photonics., Vol. 5, 76, 2011.
doi:10.1038/nphoton.2011.5
12. Reznik, B., "Origin of the thermal radiation in a solid-state analogue of a black hole," Phys. Rev. D, Vol. 62, 044044, 2000.
doi:10.1103/PhysRevD.62.044044
13. Smolyaninov, I. and Y. J. Hung, "Modeling of time with metamaterials," J. Opt. Soc. Am. B, Vol. 28, 1591, 2011.
doi:10.1364/JOSAB.28.001591
14. Smolyaninov, I. and E. E. Narimanov, "Metric signature transitions in optical metamaterials," Phys. Rev. Lett., Vol. 105, 067402, 2010.
doi:10.1103/PhysRevLett.105.067402
15. Teixeira, F. L. and W. C. Chew, "Differential forms, metrics, and the reflectionless absorption of electromagnetic waves," Journal of Electromagnetic Waves and Applications, Vol. 13, No. 5, 655-686(22), 1999.
doi:10.1163/156939399X01104
16. Chang, Z. and G. Hu, "Elastic wave omnidirectional absorbers designed by transformation method," Applied Phys. Lett., Vol. 101, 054102, 2012.
doi:10.1063/1.4740077
17. Leonhardt, U. and T. G. Philbin, "General relativity in electrical engineering," New J. Phys., Vol. 8, 247, 2006.
doi:10.1088/1367-2630/8/10/247
18. Odabasi, H., F. L. Teixeira, and W. C. Chew, "Impedance-matched absorbers and optical pseudo black holes," J. Opt. Soc. Am. B, Vol. 5, 1317, 2011.
doi:10.1364/JOSAB.28.001317
19. Lu, W., J. Jin, Z. Lin, and H. Chen, "A simple design of an artificial electromagnetic black hole," J. App. Phys., Vol. 108, 064517, 2010.
doi:10.1063/1.3485819
20. Cheng, Q., T. J. Cui, W. X. Jiang, and B. G. Cai, "An omnidirectional electromagnetic absorber made of metamaterials," New J. Phys., Vol. 12, 063006, 2010.
doi:10.1088/1367-2630/12/6/063006
21. Argyropoulos, C., E. Kallos, and Y. Hao, "FDTD analysis of the optical black hole," J. Opt. Soc. Am. B, Vol. 10, 2020, 2010.
doi:10.1364/JOSAB.27.002020
22. Wang, H.-W. and L.-W. Chen, "Wide-angle absorber achieved by optical black holes using graded index photonic crystals," J. Opt. Soc. Am. B, Vol. 8, 2222, 2012.
doi:10.1364/JOSAB.29.002222
23. Narimanov, E. E. and A. V. Kildishev, "Optical black hole: Broadband omnidirectional light absorber," Applied Phys. Lett., Vol. 95, 041106, 2009.
doi:10.1063/1.3184594
24. Lee, Y. Y., E. S. Kang, K. H. Jung, J. W. Lee, and D. Ahn, "Elliptic cylindrical pseudo-optical black hole for omnidirectional light absorber," J. Opt. Soc. Am. B, Vol. 8, 1948, 2014.
doi:10.1364/JOSAB.31.001948
25. Prokopeva, L. J., E. E. Narimanov, and A. V. Kildishev, "Elliptic cylindrical pseudo-optical black hole for omnidirectional light absorber: Comment," J. Opt. Soc. Am. B, Vol. 4, 719, 2015.
doi:10.1364/JOSAB.32.000719
26. Kildishev, A. V., L. J. Prokopeva, and E. E. Narimanov, "Cylinder light concentrator and absorber: Theoretical description," Opt. Express, Vol. 18, 16646, 2010.
doi:10.1364/OE.18.016646
27. Qiu, J., J. Y. Tan, L. H. Liu, and P.-F. Hsu, "Infrared radiative properties of two-dimensional square optical black holes," Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 112, 2584, 2011.
doi:10.1016/j.jqsrt.2011.08.002
28. Mackay, T. G. and A. Lakhtakia, "Towards a metamaterial simulation of a spinning cosmic string," Phys. Lett. A, Vol. 374, 2305, 2010.
doi:10.1016/j.physleta.2010.03.061
29. Chen, H., R.-X. Miao, and M. Li, "Transformation optics that mimics the system outside a Schwarzschild black hole," Opt. Exp., Vol. 14, 15183, 2010.
doi:10.1364/OE.18.015183
30. Genov, D. A., S. Zhang, and X. Zhang, "Mimicking celestial mechanics in metamaterials," Nat. Phys., Vol. 5, 687, 2009.
doi:10.1038/nphys1338
31. Khorasani, S. and B. Rashidian, "Optical anisotropy of schwarzschild metric within equivalent medium framework," Optics Communications, Vol. 283, 1222, 2010.
doi:10.1016/j.optcom.2009.11.090
32. Nerkararyan, K. V., S. K. Nerkararyan, and S. I. Bozhevolnyi, "Plasmonic black-hole: broadband omnidirectional absorber of gap surface plasmons," Opt. Lett., Vol. 22, 4311, 2011.
doi:10.1364/OL.36.004311
33. Qiu, J., J. Y. Tan, L. H. Liu, and P.-F. Hsu, "Radiative properties of optical board embedded with optical black holes," Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 112, 832, 2011.
doi:10.1016/j.jqsrt.2010.10.017
34. Mackay, T. G. and A. Lakhtakia, "Towards a realization of Schwarzschild-(anti-)de Sitter spacetime as a particulate metamaterial," Phys. Rev. B, Vol. 83, 195424, 2011.
doi:10.1103/PhysRevB.83.195424
35. Smolyaninov, I. I., "Virtual black holes in hyperbolic metamaterials,", Arxive: 1101.4625, 2011.
36. Zhang, Y.-L., X.-Z. Dong, M.-L. Zheng, Z.-S. Zhao, and X.-M. Duan, "Steering electromagnetic beams with conical curvature singularities," Opt. Lett., Vol. 40, 4784, 2015.
37. Boston, B. R., "Time travel in transformation optics: Metamaterials with closed null geodesics," Phys. Rev. D., Vol. 91, 124035, 2015.
doi:10.1103/PhysRevD.91.124035
38. Smolyaninov, I., "Hyperbolic metamaterials,", arXive: 1510.07137, 2015.
39. Smolyaninov, I., E. Hwang, and E. E. Narimanov, "Hyperbolic metamaterial interfaces: Hawking radiation from Rindler horizons and spacetime signature transitions," Phys. Rev. D, Vol. 85, 235122, 2012.
doi:10.1103/PhysRevB.85.235122
40. Smolyaninov, I., "Surface plasmon toy model of a rotating black hole," New J. Phys., Vol. 5, 147, 2003.
doi:10.1088/1367-2630/5/1/147
41. Smolyaninov, I., "Critical opalescence in hyperbolic metamaterials," J. Opt., Vol. 13, 125101, 2011.
doi:10.1088/2040-8978/13/12/125101
42. Smolyaninov, I., E. Hwang, and E. Narimanov, "Hyperbolic metamaterial interfaces: Hawking radiation from Rindler horizons and spacetime signature transitions," Phys. Rev. B, Vol. 85, 235122, 2012.
doi:10.1103/PhysRevB.85.235122
43. Smolyaninov, I. and Y. Hung, "Minkowski domain walls in hyperbolic metamaterials," Phys. Lett. A, Vol. 373, 353, 2013.
doi:10.1016/j.physleta.2012.11.056
44. Smolyaninov, I., "Quantum electromagnetic black holes in a strong magnetic field," J. Phys. G: Nucl. Part. Phys., Vol. 40, 015005, 2013.
doi:10.1088/0954-3899/40/1/015005
45. Smolyaninov, I., Y. Hung, and E. Hwang, "Experimental modeling of cosmological inflation with metamaterials," Phys. Lett. A, Vol. 376, 2575, 2012.
doi:10.1016/j.physleta.2012.07.010
46. Kinsler, P. and M. W. McCall, "The futures of transformations and metamaterials," Photon. Nanostruct. Fundam. Appl., Vol. 15, 10, 2015.
doi:10.1016/j.photonics.2015.04.005
47. McCall, M. W., A. Favaro, P. Kinsler, and A. Boardman, "A spacetime cloak, or a history editor," J. Opt., Vol. 13, 024003, 2011.
doi:10.1088/2040-8978/13/2/024003
48. Kinsler, P. and M. W. McCall, "Transformation devices: carpets in space and space-time," Phys. Rev. A, Vol. 81, 063818, 2014.
doi:10.1103/PhysRevA.89.063818
49. Halimeh, J. C., R. T. Thompson, and M. Wegener, "Invisibility cloaks in relativistic motion,", arXive: 1510.06144, 2015.
50. Susskind, L. and J. Lindesay, An Introduction to Black Holes, Information and the String Theory Revolution, World Scientific, 2005.
51. Leonhardt, U., "On cosmology in the laboratory," Phil. Trans. R. Soc. A, Vol. 373, 20140354, 2015.
doi:10.1098/rsta.2014.0354
52. Faccio, D., F. Belgiorno, S. Cacciatori, V. Gorini, S. Liberati, and U. Moschella, Analogue Gravity Phenomenology: Analogue Spacetimes and Horizons, from Theory to Experiment, Springer, 2013.
53. Gron, O. and S. Hervik, Einsteins General Theory of Relativity, Springer, 2007.
doi:10.1007/978-0-387-69200-5
54. Leonhardt, U. and T. G. Philbin, Geometry and Light: The Science of Invisibility, Dover, 2010.
55. Misner, C. W., K. Thorne, and J. A. Wheeler, Gravitation, W. H. Freeman and Company, 1973.
56. Landau, L. and E. M. Lifshitz, The Classical Theory of Fields, Elsevier, 2000.
57. Padmanabhan, T., Gravitation, Cambridge University Press, 2010.
doi:10.1017/CBO9780511807787
58. Kaliteevski, M. A., R. A. Abram, V. V. Nikolaev, and G. S. Sololovski, "Bragg reflectors for cylindrical waves," J. Mod. Opt., Vol. 46, 875, 1999.
doi:10.1080/09500349908231310
59. Zimmermann, E., R. Dandliker, and N. Souli, "Scattering of an off-axis Gaussian beam by a dielectric cylinder compared with a rigorous electromagnetic approach," J. Opt. Soc. Am., Vol. 12, 398, 1995.
doi:10.1364/JOSAA.12.000398
60. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, 1983.
61. Landau, L. and E. Lifshitz, Electrodynamics of Continuous Media, Elsevier, 2004.
62. Dehdashti, S., R. Roknizadeh, and A. Mahdifar, "Analogue special and general relativity by optical multilayer thin films: the Rindler space case," J. Mod. Opt., Vol. 60, 233, 2013.
doi:10.1080/09500340.2013.769638