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Abstract—Realizations of celestial objects in the laboratory have been a tantalizing subject for human
beings over centuries. In this paper, we review some of the interesting cases of realizations of black
holes in the laboratory. We first review the recent progress in observed black holes realized through the
isotropic coordinate transformation method, then discuss the realization of optical attractors. Finally,
the Rindler space-time, as a one-dimensional black hole, by using the hyperbolic metamaterials, is
discussed.

1. INTRODUCTION

Undoubtedly, general relativity has been an interesting field of science. Indeed, general relativity
has changed the human view of the world as well as advanced geometrical methods in theoretical
physics. Moreover, increased understanding of curved space-time has been additional motivation for the
investigation of objects such as black holes, worm holes, FRW universe, etc. [1]. In these investigations,
the existence of singularity, event horizon, thermodynamic properties and absorption of everything
have defined black holes in particular as an interesting subject. Ability to generate black holes in
the laboratory has technical application in solar energy harvesting photovoltaic systems, thermal light
emitting sources, optoelectronic devices, etc. [2–4].

Realization of black holes is possible from two perspectives. On the one hand, it is theoretically
related to transformation optics, based on the equivalent of curved space-time and material, which
leads to control and engineering of electromagnetic waves [5–9]. On the other hand, realization is
experimentally related to metamaterial science as is a result of progresses in the engineering of material
properties which have led to the study and creation of general relativitys objects. With these two
perspectives as points of venture, the collected studies first incorporate different theoretical methods
and fields of study in physics, including general relativity, condensed matter, optics, etc. [10–16]; second,
discuss the aforementioned experimental progresses to demonstrate the celestial objects such as black
holes, worm holes, FRW universe and Gödel universe, etc. in the laboratory [16–37]; and third, illustrate
the curved space-time and two-time physics realizations in hyperbolic metamaterials to invite discussion
for the advancement of theoretical physics [38–45]. Two challenging opportunities for continued research
in this field of study present themselves: first, deeper theoretical understanding of curved space-time
transformation optics as well as realization in hyperbolic metamaterials, which would improve upon
current understanding of curved space transformation optics [46–49]; second, progress in the engineering
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of metamaterial refractive indexes which would support future realization of celestial objects in the
laboratory with properties as close to the original objects as possible [46].

As is mentioned, the black hole is one of the interesting subjects in the physics due to the existence of
singularity, event horizon and thermodynamic properties as well as its relation to quantum information,
quantum gravity and string theory [50]. Indeed, realization of a black hole in the laboratory has be
suggested for at least two reasons: first, extension and verification of theoretical studies of black hole
properties such as Hawking radiation in the event horizon [11, 51, 52]; second, generation of optical black
hole, or attractor, for use in control of electromagnetic waves in technological applications; the subject
which is reviewed in this paper.

In this review, we start with the Maxwell equations in curved space-time, which when applied to the
isotropic metric of the Schwarzschild black hole, gives the refractive index of equivalent medium. This
structure is too complicated to realize, therefore a cylindrical Schwarzschild black hole is considered,
which despite the fact that it is easier to realize in comparison to the former, it has two main challenges:
first, it is infinitely large; second, anisotropic materials are needed for its realization. In the following, we
study the suggested manners to solve these challenges. Then, we review the optical black hole, attractor,
in detail, based on the papers that have been published so far. Also, we mention the experimental work
that has been done in studies of the optical attractor. Finally, we consider Rindler space-time, as a one
dimensional black hole, as realized through hyperbolic metamaterials.

2. ELECTROMAGNETIC WAVES IN SCHWARZSCHILD BLACK HOLE

The source-free Maxwell equations, in the covariant formalism, are written by [53]
dF = 0,

d � F = 0,
(1)

where the Hodge star operator �, by using the antisymmetric Levi-Civita symbol εαβσρ, is defined by [53]

� μν
αβ =

1
2

√
|g|εαβσρg

σμgρν , (2)

and

F =

⎛
⎜⎝

0 −Ex −Ey −Ez

Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0

⎞
⎟⎠ . (3)

Now, by using Hμν =
√|g|Fμν , the Maxwell equations can be written as [54],

Hμν
,ν = 0,

� Hμν
,ν = 0,

(4)

In this case, component of Hμν is defined by following relations [54]:

H =

⎛
⎜⎝

0 −Dx −Dy −Dz

Dx 0 Hz −Hy

Dy −Hz 0 Hx

Dz Hy −Hx 0

⎞
⎟⎠ . (5)

It is evident that relations (4) are similar to the Maxwell equations in the flat space, on the following
constitutive condition [54],

Di = εikEk − (G× H)i,
Bi = μikHk − (G × E)i

(6)

where

εik = μik = −
√

|g|g
ik

g00

Gi =
gi0

g00
.

(7)
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Therefore, the Maxwell equations in the flat space that is filled with media are similar to the Maxwell
equations in the curved space-time, i.e., geometries appear as dielectric media [54].

Now, let us start with the Schwarzschild black hole metric, defined as follows:

ds2 = −
(
1 − rs

r

)
dt2 +

(
1 − rs

r

)−1
dr2 + r2dθ2 + r2 sin2 θdφ2, (8)

in which Schwarzschild radius r = rs has the well-behaved and finite curvature tensors, but the space-
time has a horizon in these coordinates [53]. As mentioned, we have to write the Maxwell equations in
the Cartesian coordinates. For this purpose, we introduce the isotropic metric form:

ds2 =−
(
1− rs

f(ρ)

)
dt2+

[
f(ρ)
ρ

]2(
dρ2+ρ2dθ2+ρ2 sin2 θdφ2

)
=−

(
1− rs

f(ρ)

)
dt2+

[
f(ρ)
ρ

]2(
δijdx

idxj
)
, (9)

which
x = ρ cosφ sin θ, y = ρ sinφ sin θ, z = ρ cos θ, (10)

and ρ is the isotropic radial coordinate. Now, we impose the condition r = f(ρ) so that the metric (8)
is turned into metric (9). This relation imposes the following relation:

ρ
df

dρ
=
√
f2 − frs. (11)

Therefore, by using (7), we can obtain:

n = εij = μij =
f(ρ)
ρ

1√
1 − rs

f(ρ)

=
1
2

(
1 + rs

2ρ

)3

(
1 − rs

2ρ

) δij . (12)

In the approximation of geometrical optics, i.e., the dielectric permittivities do not vary significantly
over the local wavelength, the effective Hamiltonian, which describes the trace of light ray, is given
by [23],

Heff =
p2

ρ

2ε(ρ)
+

m2

2ρ2ε(ρ)
, (13)

where pρ is the radial momentum and m the total angular momentum. A straightforward solution of
the Hamiltonian equations for Equation (13) yields the ray trajectories in the polar coordinates

φ(ρ) = φ0 +
∫ m/r

m/ρ0

dξ√
C0ε

(
m
ξ

)
− ξ2

(14)

where the constants ρ0, φ and C0 are set by the initial conditions. Fig. 1(a) indicates the density plot
of the refractive index (12) and ray path of light. Note that the isotropic radial coordinate ρ has no
direct physical meaning.

The linearized Schwarzschild black hole is the another case which is described in this case [31].
Indeed, the linearized Schwarzschild black hole is an approximate solution of Einstein field equation
and correspondence to the star’s metric [55]:

ds2 = −c2
(
1 − rs

r

)
dt2 +

(
1 +

rs
r

) (
dx2 + dy2 + dz2

)
. (15)

Moreover, another type of the linearized Schwarzschild black hole can be written as [56, 57],

ds2 = −c2
(
1 − 2

rs
r

)
dt2 + dx2 + dy2 + dz2. (16)

The refractive indexes of both metrics, i.e., relations (15) and (16), by using relation (7), are respectively
given by

n =
√
r + rs
r − rs

,

n =
√

r

r − 2rs

(17)
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(a) (b)

(c) (d)

Figure 1. Density plots of refractive index of analogue medium of Schwarzschild black hole (12) and
linearized Schwarzschild black holes (17), and (30) as well as propagation dynamics of light rays in plot
(a), (b), (c) and (d), respectively.

which are respectively plotted in Figs. 1(b) and (c). Also, some paths of propagation light are plotted in
these plots. It is obvious that refractive indexes in all cases diverge as the radial coordinate approaches
the event horizon rs and 2rs, in relations (12) and (17).

Also, by rewriting the Schwarzschild black hole in Cartesian coordinates [34],

g =

⎛
⎜⎜⎜⎜⎝

− (1 − rs
r

)
0 0 0

0 1 + rs
r−rs

x2

r2
rs

r−rs

xy
r2

rs
r−rs

xz
r2

0 rs
r−rs

xy
r2 1 + rs

r−rs

y2

r2
rs

r−rs

yz
r2

0 rs
r−rs

xz
r2

rs
r−rs

yz
r2 1 + rs

r−rs

z2

r2

⎞
⎟⎟⎟⎟⎠ . (18)

By using MT gM, in which the orthogonal matrix M transfers the Cartesian coordinates to the spherical
ones and is introduced by

M =

⎛
⎜⎜⎜⎝

1 0 0 0
0 −x

r
z√

x2+z2

xy

r
√

x2+z2

0 −y
r 0 −

√
x2+z2

r

0 − z
r

−x√
x2+z2

yz

r
√

x2+z2

⎞
⎟⎟⎟⎠ , (19)
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the diagonal transformation of the Schwarzschild black hole, in the spherical coordinates, is given as:

[gαβ ] = diag
(
−
(
1 − rs

r

)
,
(
1 − rs

r

)−1
, 1, 1

)
. (20)

Therefore, the tensor of permittivity, in the spherical coordinates, is given by

εij = diag
(

1,
(
1 − rs

r

)−1
,
(
1 − rs

r

)−1
)
, (21)

which describes an uni-axial dielectric-magnetic medium [34]. These structures with spherical symmetry
are hard to generate; therefore, the cylindrical Schwarzschild Black hole is considered in the next section.

3. REALIZATION OF CYLINDRICAL SCHWARZSCHILD BLACK HOLE

Under H. Chen, et al., suggestion, cylindrical back hole can be constructed with the following metric [29]:

ds2 = −
(

1 − L

r

)
dt2 +

(
1 − L

r

)−1

dr2 + r2dθ2 + dz2, (22)

where by using relations (7), in the Cartesian coordinates, the permittivities are given by:

εij = μij =
(

1 − L

r

)−1

⎛
⎜⎝ 1 − L

r
x2

r2 −L
r

xy
r2 0

−L
r

xy
r2 1 − L

r
y2

r2 0
0 0 1

⎞
⎟⎠ , (23)

In this case, the permittivities can be rewritten in the cylindrical coordinates as:

εr = μr = 1, εθ = μθ = εz = μz =
(

1 − L

r

)−1

. (24)

As is evident, these parameters diverge, as r approaches the event horizon L. For considering the
numerical solution, the following permittivity and permeability are considered:

μr = 1, μθ = εz =
(

1 − L

r

)−1

, r > L

μr = 1, μθ = εz =
(

1 − L′

L

)−1

(1 + i) , 0 < r < L,

(25)

where L′ = L− δ with δ � 1, consequently, most of the TE electromagnetic waves are absorbed by the
event horizon. Fig. 2 demonstrates the simulations for different incident Gaussian beams interacting
with the metamaterial black hole. However, for realization of this device, we have at least two challenges:
first, this device is infinitely large; second, it is constructed by anisotropic materials. To solve the first
problem, we consider the following non-answer of Einstein’s field equation:

ds2 = −α
(

1 − L

r

)
dt2 + α−1

(
1 − L

r

)−1

dr2 + r2dθ2 + dz2, (26)

where α = (1 − L/L2) squeezes the space-time; in addition, we impose α(1 − L/r) = 1 at r = L2 while
we suppose that the out of these regions, i.e., r > L2, are flat; therefore, the above metric approaches
the flat metric when r approaches L2; according to this structures, the permittivity is given by

εr = μr = 1, εθ = μθ = εz = μz =
(
α− αL

r

)−1

, (27)

while outside r = L2 is vacuum. To solve the second problem, by using the isotropic coordinates
methods introduced in the Section 2, we obtain the isotropic transformed coordinates as

r(r̃) =
(2r̃α + L)2

8r̃α
, (28)
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(a) (b)

(c) (d)

Figure 2. The magnetic field amplitude H near the black hole from Eq. (25) for different incident
Gaussian beams with beam center at (a) (2L, 0), (b) (2.5L, 0), (c) (3L, 0), (d) (3.5L, 0). The incident
wavelengths and the beam widths are λ = ω = 0.25L. The beams are incident at an angle of 60 deg
from x-axis [29].

where r̃ is the isotropic radial coordinate; consequently, the metric (26) is transformed as

ds2 = −
(

2r̃α − L

2r̃α + L

)2

dt2 +
(

(2r̃α + L)2

8r̃α+1

)2 (
dx2 + dy2 + dz2

)
. (29)

Finally, by using the relation (7), the refractive index profile of the metric (29), is obtained as

n(r̃) =
(2r̃α + L)3

8r̃α+1 (2r̃α − L)
, r̃ ∈

[(
L

2

)1/α

,∞
)
. (30)

In this case, Fig. 1(d) shows the propagation of light for this structure, described by relation (30), with
L2 = 5 and L = 1/2.

4. OPTICAL BLACK HOLE

Another idea which has been theoretically and experimentally investigated in detail is optical black hole
or attractor. Indeed, the idea of such a device is based on the Schwarzschild black hole even though
it is not directly related to the transformation optics. This device, consists of the payload core with
the radius Rc, surrounded by the concentrating shell of radius R, which was suggested and studied in
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several works so far [18–25]. In this paper, we focus on the cylindrically symmetric distributions of the
dielectric permittivity ε(r) as follows:

ε(r) =

⎧⎪⎨
⎪⎩

ε0, r > R

ε0
R2

r2 , Rc < r < R,

εc + iγ, r < Rc,

(31)

where Rc = R ε0
εc

. By using the geometrical optics, the effective Hamiltonian that describes the trace
of light ray propagation is given by the relation (13). Fig. 3 shows the propagation of light for this
structure, described by relation (31).
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Figure 3. Density plots of refractive index of analogue medium of optical attractor (31) as well as
propagation dynamics of light rays.

Moreover, by solving the Maxwell equations, directly, for TE polarization, i.e., E = E(r, φ)ẑ, we
can obtain

E(r, φ, t) = e−imφ−iωt

⎧⎪⎨
⎪⎩

AJm

(√
εc + iγ ω

c r
)
, r < Rc,

B cos
[√

k2
0R

2 −m2 log r
R

]
+ C sin

[√
k2
0R

2 −m2 log r
Rc

]
, Rc < r < R,

H−
m(k0r) + rmH

+
m(k0r), r > R,

where A, B and C are constants; Jm and H±
m = Jm ± iYm are respectively the standard Bessel function

and Hankel function; rm is the reflection coefficient for the angular momentum m. By considering the
boundary conditions, that is, continuity of E and its normal derivative, reflection coefficient rm is given
by

rm =
H−′

m (k0R) + ηmH
−
m(k0R)

H+′
m (k0R) + ηmH

+
m(k0R)

, (32)

where

ηm = −
√
k2
0R

2 −m2

k0R
tan

(√
k2
0R

2 −m2 log
R

Rc
− arctan

(
pk0R√

k2
0R

2 −m2

)
J ′

m(pk0R)
Jm(pk0R)

)
, (33)

and p =
√

(εc + iγ) /ε0. In this case, the absorption cross section per unit length of a cylinder is
obtained

σa = 2R
[
1 − 2F

(
k0Rγ

εc

)
+ F

(
2k0Rγ

εc

)]
, (34)

where

F (x) =
∫ π/2

0
dθ cos θe−x cos θ ≈ 1

x2
, x� 1, (35)
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Therefore, as we expect, the absorption cross section per unit length, under the condition k0Rγ � 1, is
close to the full geometrical cross-section of the cylinder, 2R [23].

Also, by using the same method, the magnetic component of TM polarization electromagnetic
waves are given by [58]

H in
z =

∞∑
n=−∞

H in
z (r)einφ−iωt Rc < r < R (36)

in which n is the angular momentum number, ω is the angular frequency and H in
z (r) are given by

H in
z (r) = An

( r
R

)−1+
√

n2−k2
0R2+1

+Bn

( r
R

)−1−
√

n2−k2
0R2+1

. (37)

In addition, if we suppose that, for TM polarization electromagnetic waves, the Gaussian beam is
incident [19],

H inc
z (r, φ; t) =

∞∑
n=−∞

Pni
nJn(k0r)einφ−iωt, r > R, (38)

in which J(k0r) are Bessel functions of order n and Pn obtained by [58, 59],

Pn =
W0

2
√
π

∫ ∞

−∞
e

1
2
k2

yW 2
0 −i

√
k2−k2

yx0−ikyy0−iαndky, (39)

where W0 is half of the beam waist, (x0, y0) is beam center in Cartesian coordinates and α =
2π
λ sin−1(ky

k ). The total magnetic field Hout
z is the summation of the incident field and the scattering

field Hsca
z , given by

Hsca
z (r, φ; t) =

∞∑
n=−∞

Qni
nH1

n(k0r)einφ−ωt (40)

where H1
n is the first kind Hankel function [19]. In the region Rc < r < R, the magnetic fields are given

by [58],

H in
z =

∞∑
n=−∞

H in
z (r)einφ−iωt Rc < r < R (41)

in which n is the angular momentum number and ω the angular frequency. Finally, the magnetic fields
in core region are given by [58],

Hcore
z (r, φ; t) =

∞∑
n=−∞

CnJn

(
k0

√
εc + iγr

)
einφ−iωt. (42)

In this case, the absorption cross section per unit length is given by [60],

σa =
−4
k0

∞∑
−∞

(∣∣∣∣Qn

Pn

∣∣∣∣
2

+ Re
[
Qn

Pn

])
(43)

which is also close to the quantity of 2R [60].
For realization of the optical attractor device with permittivity (31), multilayered cylindrical

structure is applied. The inhomogeneous region Rc < r < R is divided into N concentric shells of
isotropic dielectrics with equal thickness. The left panel of Fig. 4 shows the magnetic field intensity
pattern for an incident Gaussian beam interacting with the EM black hole, which is calculated based on
rigorous solutions Equations (37)–(42). The right panel of Fig. 4 indicates the magnetic field intensity
pattern near the multi-layered EM black hole, with 12-layers, as a concrete example [19, 26]. In
Ref. [19], an experimental work has been done with five kinds of real isotropic materials, including
air, aluminum (Al) metal rods, polyethylene (PE), polymethyl methacrylate (PMMA) plexiglass, and
polyvinylidene fluoride (PVDF) which their relative permittivities in microwave frequencies near 10 GHz
are respectively about εair = 1, εAl = ∞, εPE = 2.3, εPMMA = 2.6 and εPVDF = 7 + 0.7i, with the
thickness of each layer equal to 5mm.
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(a) (b)

Figure 4. The left plot is shown the magnetic field intensity pattern for an incident Gaussian beam
interacting with the EM black hole, which is calculated based on rigorous solutions Eqs. (37)–(42). The
right plot indicates the magnetic field intensity pattern near the multi-layered EM black hole, with 12-
layers with associated permittivities, respectively, ε1 = 3.66, ε2 = 3.15, ε3 = 2.60, ε4 = 2.30, ε5 = 2.12,
ε6 = 1.89, ε7 = 1.66, ε8 = 1.54, ε9 = 1.41, ε10 = 1.34, ε11 = 1.28, ε12 = 1 and their thickness is
considered d = 1mm [19].

Finally, we have to mention the possibility of construction of the omnidirectional absorbers by using
a conformal mapping [16]. Indeed, by using the following conformal mapping:

w = Azn, A �= 0, n < 0, (44)
in which w = x′ + iy′ is the physical space and z = x + iy is the virtual space, Z. Chang, et al., have
constructed a omnidirectional absorbers for elastic waves [16].

5. REALIZATION OF THE SCHWARZSCHILD BLACK HOLE BY HYPERBOLIC
METAMATERIALS

As is mentioned before, the hyperbolic metamaterials demonstrates the curved space-time, including
(1 + 2)-Minkowski spacetime, back hole, wormhole, and two-times physics [38–45]. Indeed, one
dimension, in the hyperbolic metamaterials, can be considered as a “time-like” coordinate whereas other
dimensions indicate spatial coordinates [13, 14, 42]. It can be illustrated by considering a nonmagnetic
uniaxial anisotropic metamaterial with dielectric permittivities εx = εy = ε1 > 0 and εz = ε2 < 0
that is added to this assumption that this behaviour holds in some frequency range around ω = ω0.
Therefore, any electromagnetic field propagating in this material can be considered as a sum of ordinary
and extraordinary contributions, each of these being a sum of an arbitrary number of plane waves
polarized in the ordinary Ez = 0 and extraordinary Ez �= 0 directions [13, 14, 42]. Now, by considering
scalar extraordinary wave function Ez = φ, the ordinary portion of the electromagnetic field does not
contribute to φ. Now, by considering Maxwell equations in frequency domain [61],

ω2

c2
Dω = ∇×∇× Eω Dω = εEω (45)

the Klein-Gordon equation is obtained,

−ε−1
1 ∂2

zφω + ε−1
2

(
∂2

xφω + ∂2
yφω

)
=
ω2

c2
φω, (46)

in which the spatial coordinate z = τ behaves as a timelike coordinate. By this assumption, the z-
dependent dielectric permittivity component εz = ε2 changes sign at z = 0, the dielectric tensor of the
composite is given by

ε1 ≈ εd, ε2 ≈ εd + p(z)εm, (47)
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where −εm � εd ∼ 1 and p� 1. By considering the in-plane wave vector (kx, ky), i.e.,

Eω(r) = E(z)eikxx+ikyy, (48)
so that the ordinary and extraordinary waves correspond to the TE- and TM -polarized modes,
respectively. We consider the case of constant ε2 = εz < 0 and assume that finite ε1(x) = εx = εy
changes sign from ε1 > 0 to ε1 < 0 as a function of x as is indicated in Fig. 5. Introducing ψ = B, we
obtain [42]

−∂2
xψ +

ε2
ε1
∂2

zψ =
ε2ω

2
0

c2
ψ, (49)

where Ex ∼ −ε−1
x ∂xψ diverges at the interface. By considering ε1 = αx2, at x = 0 leads to Rindler-like

optical space [62] near the interface, which is written as

ds2 = −g
2x2

c2
dt2 + dl2, (50)

which can describe the area near the event horizon of the Schwarzschild Black hole [42]. Since the
extraordinary photon wave vector k ≈ kx ∼ (ε2/ε1)1/2kz diverges at the interface, the optical length
element of the extraordinary photons also diverges,

dl2opt =
k2c2

ω2
dl2 ∼ dl2

x2
(51)

where the spatial line element dl corresponds to Fermat metric as perceived by the Rindler observers.

Figure 5. Metric signature change across a spacelike direction leads to appearance of a Rindler
horizon [42].

6. CONCLUSIONS

Realization of celestial objects in the laboratory has been a tantalizing concept for human being over
centuries. Recent developments in transformation optics as well as metamaterial science have caused
the extension of a multidisciplinary field, including general relativity, quantum gravity, inflation and
string theory on the one hand, and optics and metamaterial science, on the other. Indeed, realization of
some experimental works about two times physics, string theory, quantum gravity and inflation as well
as realization some celestial objects, such as black hole, worm hole and FRW universe, Gödel metric
and multiuniverse, in the laboratory have been a result of these progresses. In this review paper, we
investigated some realizations of black holes in optics as the interesting object in theoretical physics. For
this purpose, we started with the Maxwell equations in curved space-time; then, with a brief review of
isotropic coordinates transformation method, we considered the refractive index of such structures and
investigated the propagations of light ray in these cases, including Schwarzschild and linearized black
holes as well as cylindrical ones. Optical attractor, as another case which can be realized in technological
applications, was investigated. Finally, our particular attention was devoted to the Rindler space-time,
as a one dimension black hole, in the last part of this review.
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