login
Vol. 65
Latest Volume
All Volumes
PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2016-01-21
Novel Broadband Equalizer Optimization Technique for High-Speed Digital System Designs
By
Progress In Electromagnetics Research B, Vol. 65, 143-155, 2016
Abstract
In this paper, a novel broadband equalizer optimization technique is introduced for high-speed digital system designs. Through effectively compensating both conductor loss and dielectric loss, this technique provides a new solution to find optimal equalizer for high-speed signaling over printed circuit board (PCB) with continuous time linear equalizer (CTLE) as an application. The coefficients of CTLE are quickly identified through searching the minimum of the variation of total transfer functions over the low-mid frequency range. Channel simulations with different server interfaces of 12 Gbps and 25 Gbps are performed, respectively. Simulation results are presented to validate the technique.
Citation
Shaowu Huang, and Beomtaek Lee, "Novel Broadband Equalizer Optimization Technique for High-Speed Digital System Designs," Progress In Electromagnetics Research B, Vol. 65, 143-155, 2016.
doi:10.2528/PIERB15110603
References

1. Hall, H. and H. L. Heck, Advanced Signal Integrity for High-speed Digital Designs, John Wiley & Sons, 2011.

2. Lee, B., M. Mazumder, and R. Mellitz, "High speed differential I/O overview and design challenges on Intel enterprise server platforms," IEEE Symp. Electromagn. Compat., 779-784, Aug. 14-19, 2011.

3. Beyene, W. T., "The design of continuous-time linear equalizers using model order reduction techniques," Proceedings of IEEE Electrical Performance of Electronic Packaging (EPEP), 187-190, Oct. 2008.

4. Holdenried, C., R. Bespalko, S. Sadr, and K. Walsh, "Design challenges of RX equalizer and DFE design at 16 GT/s,", PCI-SIG, 2013.

5. Parikh, S., T. Kao, Y. Hidaka, J. Jiang, A. Toda, S. Mcleod, W. Walker, Y. Koyanagi, T. Shibuya, and J. Yamada, "A 32 Gb/s wireline receiver with a low-frequency equalizer, CTLE and 2-tap DFE in 28 nm CMOS," 2013 IEEE International Solid-State Circuits Conference (ISSCC), 2013.

6. Kimura, H., P. M. Aziz, T. Jing, A. Sinha, S. P. Kotagiri, R. Narayan, H. Gao, et al. "A 28 Gb/s 560 mW multi-standard SerDes with single-stage analog front-end and 14-tap decision feedback equalizer in 28 nm CMOS," IEEE Journal of Solid-State Circuits, Vol. 49, No. 12, 3091-3103, 2014.
doi:10.1109/JSSC.2014.2349974

7. Huang, S. and B. Lee, "New broadband equalizer optimization technique for digital system designs," 2015 IEEE 24th Electrical Performance of Electronic Packaging and Systems (EPEPS), San Jose, CA, Oct. 25-28, 2015.

8. Li, C., R. Bai, A. Shafik, E. Z. Tabasy, B. Wang, G. Tang, C. Ma, et al. "Silicon photonic transceiver circuits with microring resonator bias-based wavelength stabilization in 65 nm CMOS," IEEE Journal of Solid-State Circuits, Vol. 49, No. 6, 1419-1436, 2014.
doi:10.1109/JSSC.2014.2321574

9. Zhang, B., K. Khanoyan, H. Hatamkhani, H. Tong, K. Hu, S. Fallahi, K. Vakilian, and A. Brewster, "3.1 A 28 Gb/s multi-standard serial-link transceiver for backplane applications in 28 nm CMOS," 2015 IEEE International Solid-State Circuits Conference (ISSCC), 1-3, 2015.

10. Yuan, S., Z. Wang, X. Zheng, W. Jia, L. Wu, C. Zhang, and Z. Wang, "10 Gbit/s serial link receiver with speculative decision feedback equaliser using mixed-signal adaption in 65 nm CMOS technology," Electronics Letters, Vol. 51, No. 21, 1645-1647, 2015.
doi:10.1049/el.2015.1318

11. Kim, M., J. Bae, U. Ha, and H.-J. Yoo, "A 24-mW 28-Gb/s wireline receiver with low-frequency equalizing CTLE and 2-tap speculative DFE," 2015 IEEE International Symposium on Circuits and Systems (ISCAS), 1610-1613, 2015.
doi:10.1109/ISCAS.2015.7168957

12. Wang, H., B. Yan, Z. Wang, and R.-M. Xu, "A broadband microwave gain equalizer," Progress In Electromagnetics Research Letters, Vol. 33, 63-72, 2012.
doi:10.2528/PIERL12052309

13. Inmet, A. and M. I. Ann Arbor, "Adjustable mm-wave gain equalizers," Microwave Journal, Aug. 3, 2007.

14. Kampa, J. and K. Petrus, "Microwave amplitude equalizer," 13th International Conference on Microwaves, Radar and Wireless Communications, Vol. 1, 37-40, 2000.

15. Zhou, T.-F., Y. Zhang, and R.-M. Xu, "Research on the millimeter wave gain equalizer," IEEE International Conference on Microwave Technology & Computational Electromagnetics (ICMTCE), 180-182, May 2011.

16. Silapunt, R. and D. Torrungrueng, "Theoretical study of microwave transistor amplifier design in the conjugately characteristic-impedance transmission line (CCITL) system using a bilinear transformation approach," Progress In Electromagnetics Research, Vol. 120, 309-326, 2011.
doi:10.2528/PIER11080504

17. Khalaj-Amirhosseini, M., "Analysis of coupled or single nonuniform transmission lines using step-by-step numerical integration," Progress In Electromagnetics Research, Vol. 58, 187-198, 2006.

18. Raphaeli, D. and A. Saguy, "Linear equalizers for Turbo equalization: A new optimization criterion for determining the equalizer taps," Proc. 2nd Intern. Symp. on Turbo Codes, 371-374, Brest, France, 2000.

19. Patrick, K. D. and A. A. Abidi, "A 40-mW 55 Mb/s CMOS equalizer for use in magnetic storage read channels," IEICE Transactions on Electronics, Vol. 77, No. 5, 819-829, 1994.

20. Lee, I., "Optimization of tap spacings for the tapped delay line decision feedback equalizer," IEEE Communications Letters, Vol. 5, No. 10, 429-431, 2001.
doi:10.1109/4234.957384

21. Su, T.-J., J.-C. Cheng, and C.-J. Yu, "An adaptive channel equalizer using self-adaptation bacterial foraging optimization," Optics Communications, Vol. 283, No. 20, 3911-3916, 2010.
doi:10.1016/j.optcom.2010.06.007

22. Song, E., J. Cho, J. Kim, Y. Shim, G. Kim, and J. Kim, "Modeling and design optimization of a wideband passive equalizer on PCB based on near-end crosstalk and reflections for high-speed serial data transmission," IEEE Transactions on Electromagnetic Compatibility, Vol. 52, No. 2, 410-420, 2010.
doi:10.1109/TEMC.2010.2042452

23. Hsu, H.-T., H.-W. Yao, K. Zaki, and A. E. Atia, "Synthesis of coupled-resonators group-delay equalizers," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 8, 1960-1968, 2002.
doi:10.1109/TMTT.2002.801344