Vol. 65
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2015-12-17
Generalized Optical Theorem in the Time Domain
By
Progress In Electromagnetics Research B, Vol. 65, 1-18, 2016
Abstract
The optical theorem is a fundamental result that describes the energy budget of wave scattering phenomena. Most past formulations have been derived in the frequency domain and thus apply only to linear time-invariant (LTI) scatterers and background media. In this paper we develop a new theory of the electromagnetic form of the optical theorem directly in the time domain. The derived formulation covers not only the ordinary optical theorem but also the most general form of this result, known as the generalized optical theorem. The developed formulation provides a very general description of the optical theorem for arbitrary probing fields and general scatterers that can be electromagnetically nonlinear, time-varying, and lossy. In the derived formalism, both the scatterer and the background medium can be nonhomogeneous and anisotropic, but the background is assumed to be LTI and lossless. The derived results are illustrated with a computer simulation study of scattering in the presence of a corner reflector which acts as the background. Connections to prior work on the time-domain optical theorem under plane wave excitation in free space are also discussed.
Citation
Edwin A. Marengo, and Jing Tu, "Generalized Optical Theorem in the Time Domain," Progress In Electromagnetics Research B, Vol. 65, 1-18, 2016.
doi:10.2528/PIERB15110506
References

1. Born, M. and E. Wolf, Principles of Optics, 7th Ed., Cambridge University Press, 1999.
doi:10.1017/CBO9781139644181

2. Newton, R. G., Scattering Theory of Waves and Particles, 2nd Ed., Springer-Verlag, 1982.
doi:10.1007/978-3-642-88128-2

3. Carney, P. S., J. C. Schotland, and E. Wolf, "Generalized optical theorem for reflection, transmission, and extinction of power for scalar fields," Phys. Rev. E, Vol. 70, 036611, 2004.
doi:10.1103/PhysRevE.70.036611

4. Lytle II, D. R., P. S. Carney, J. C. Schotland, and E. Wolf, "Generalized optical theorem for reflection, transmission, and extinction of power for electromagnetic fields," Phys. Rev. E, Vol. 71, 056610, 2005.
doi:10.1103/PhysRevE.71.056610

5. Marengo, E. A., "A new theory of the generalized optical theorem in anisotropic media," IEEE Trans. Antennas Propagat., Vol. 61, 2164-2179, Apr. 2013.
doi:10.1109/TAP.2012.2233702

6. Dacol, D. K. and D. G. Roy, "Generalized optical theorem for scattering in inhomogeneous media," Phys. Rev. E, Vol. 72, 036609, 2005.
doi:10.1103/PhysRevE.72.036609

7. Halliday, D. and A. Curtis, "Generalized optical theorem for surface waves and layered media," Phys. Rev. E, Vol. 79, 056603, 2008.
doi:10.1103/PhysRevE.79.056603

8. Lu, L., Z. Ding, R. S. Zeng, and Z. He, "Retrieval of Green's function and generalized optical theorem for the scattering of complete dyadic fields," J. Acoust. Soc. Am., Vol. 129, 1935-1944, 2011.
doi:10.1121/1.3553224

9. Douma, H., I. Vasconcelos, and R. Snieder, "The reciprocity theorem for the scattered field is the progenitor of the generalized optical theorem," J. Acoust. Soc. Am., Vol. 129, 2765-2771, 2011.
doi:10.1121/1.3569728

10. Wapenaar, K. and H. Douma, "A unified optical theorem for scalar and vectorial wave fields," J. Acoust. Soc. Am., Vol. 131, 3611-3626, 2012.
doi:10.1121/1.3701880

11. Small, A., J. Fung, and V. N. Manoharan, "Generalization of the optical theorem for light scattering from a particle at a planar interface," J. Opt. Soc. Am. A, Vol. 30, 2519-2525, 2013.
doi:10.1364/JOSAA.30.002519

12. Mitri, F. G., "Optical theorem for two-dimensional (2D) scalar monochromatic acoustical beams in cylindrical coordinates," Ultrasonics, Vol. 62, 20-26, 2015.
doi:10.1016/j.ultras.2015.02.019

13. Mitri, F. G. and G. T. Silva, "Generalization of the extended optical theorem for scalar arbitrary-shape acoustical beams in spherical coordinates," Phys. Rev. E, Vol. 90, 053204, 2014.
doi:10.1103/PhysRevE.90.053204

14. Marengo, E. A. and J. Tu, "Optical theorem detectors for active scatterers," Waves in Random and Complex Media, Vol. 25, 682-707, 2015.
doi:10.1080/17455030.2015.1080390

15. Gustafsson, M., I. Vakili, S. E. B. Keskin, D. Sjöberg, and C. Larsson, "Optical theorem and forward scattering sum rule for periodic structures," IEEE Trans. Antennas Propagat., Vol. 60, 3818-3826, 2012.
doi:10.1109/TAP.2012.2201113

16. Zhang, L. and P. L. Marston, "Optical theorem for acoustic non-diffracting beams and application to radiation force and torque," Biomedical Optics Express, Vol. 4, 1610-1617, 2013.
doi:10.1364/BOE.4.001610

17. Smotrova, E. I., V. O. Byelobrov, T. M. Benson, J. Ctyroky, R. Sauleau, and A. I. Nosich, "Optical theorem helps understand thresholds of lasing in microcavities with active region," IEEE J. Quantum Electronics, Vol. 47, 20-30, 2011.
doi:10.1109/JQE.2010.2055836

18. Tsai, C.-H., S.-H. Chang, and S. H. Tseng, "Applying the optical theorem in a finite-difference time-domain simulation of light scattering," IEEE Trans. Antennas Propag., Vol. 58, 3091-3094, 2010.
doi:10.1109/TAP.2010.2052556

19. De Hoop, A. T., "A time domain energy theorem for scattering of plane electromagnetic waves," Radio Science, Vol. 19, 1179-1184, 1984.
doi:10.1029/RS019i005p01179

20. Karlsson, A., "On the time domain version of the optical theorem," Am. J. Phys., Vol. 68, 344-349, 2000.
doi:10.1119/1.19437

21. Karlsson, A., "Some results extracted from the time domain version of the optical theorem," Radio Science, Vol. 38, No. 2, article 8008, 10 pages, 2003.

22. Štumpf, M. and I. E. Lager, "The time-domain optical theorem in antenna theory," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 895-897, Apr. 2015.
doi:10.1109/LAWP.2014.2384008

23. Marengo, E. A. and F. K. Gruber, "Optical-theorem-based coherent scatterer detection in complex environments," International Journal of Antennas and Propagation, Vol. 2013, article 231729, 12 pages, 2013.

24. Manson, G., K. Worden, and M. Wood, "Analysis of reciprocity breakdown in nonlinear systems," Modern Practice in Stress & Vibration Analysis, J. Physics, conf. series 382, paper 012031, IOP Publishing, 2012.

25. De Hoop, A. T., "Time-domain reciprocity theorems for electromagnetic fields in dispersive media," Radio Science, Vol. 22, 1171-1178, Dec. 1987.
doi:10.1029/RS022i007p01171

26. Kong, J. A. and D. K. Cheng, "Modified reciprocity theorem for bianisotropic media," Proc. IEEE, Vol. 117, 349-350, Feb. 1970.

27. Jackson, J. D., Classical Electrodynamics, 3rd Ed., John Wiley & Sons, 1999.

28. Marengo, E. A., "Nonuniqueness of optical theorem detectors," J. Opt. Soc. Am. A, Vol. 32, 1936-1942, 2015.
doi:10.1364/JOSAA.32.001936

29. Marengo, E. A. and A. J. Devaney, "Time-dependent plane wave and multipole expansions of the electromagnetic field," J. Math. Phys., Vol. 39, 3643-3660, 1998.
doi:10.1063/1.532457