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Generalized Optical Theorem in the Time Domain

Edwin A. Marengo* and Jing Tu

Abstract—The optical theorem is a fundamental result that describes the energy budget of wave
scattering phenomena. Most past formulations have been derived in the frequency domain and thus
apply only to linear time-invariant (LTI) scatterers and background media. In this paper we develop
a new theory of the electromagnetic form of the optical theorem directly in the time domain. The
derived formulation covers not only the ordinary optical theorem but also the most general form of
this result, known as the generalized optical theorem. The developed formulation provides a very
general description of the optical theorem for arbitrary probing fields and general scatterers that can be
electromagnetically nonlinear, time-varying, and lossy. In the derived formalism, both the scatterer and
the background medium can be nonhomogeneous and anisotropic, but the background is assumed to
be LTI and lossless. The derived results are illustrated with a computer simulation study of scattering
in the presence of a corner reflector which acts as the background. Connections to prior work on the
time-domain optical theorem under plane wave excitation in free space are also discussed.

1. INTRODUCTION

The optical theorem is a fundamental relation that characterizes the energy budget of scattering
phenomena (see [1], sec. 13.3 and 13.6, and [2], sec. 1.3.9, for an overview). This fundamental result
of wave theory has been the topic of a large body of literature in the past 15 years, which has
addressed, among other areas, generalizations to arbitrary probing fields and media [3–5], detailed
accounts for nonhomogeneous media [6, 7], descriptions from the point of view of Green’s function
extraction from field correlations [8, 9], and Green-operator-based optical theorem formulations [10].
Other contributions include formulations of the optical theorem for specialized sensing geometries and
coordinate systems [11–13], the optical theorem for active scatterers [14], as well as applications to
periodic structures [15], sensors [16], lasers [17], and computational methods [18]. The vast majority
of the past efforts in this area have focused on the frequency domain formulation relevant to linear
time-invariant (LTI) media. On the other hand, a few papers [19–21] have addressed the time-domain
generalization, including a recent paper [22] which considers the application to antenna scattering.

In this contribution, we further expand the theoretical repertoire on the optical theorem in the
time domain, addressing pending aspects of the theory not covered in the previous key papers [19–22].
In particular, we consider not only the ordinary optical theorem which is the focus of these papers but
also the most general form of the optical theorem known as the generalized optical theorem (see [1],
p. 723, and [5] for an overview of the frequency domain version). To the best of our knowledge, this
is the first formulation of the generalized optical theorem in the time domain. In addition, it has been
shown that in addition to the conventional “real power” optical theorem there is also a less known
reactive optical theorem [5]. Both forms of the optical theorem have been found to be quite useful in
the design of novel change detection algorithms for random and complex media [14, 23]. In this work
we provide the first time domain formulation of the reactive optical theorem. Furthermore, the focus
of past time-domain formulations has been on homogeneous backgrounds such as free space, as well as
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probing of the scatterer by homogeneous plane waves. We generalize the time-domain optical theorem
to more general nonhomogeneous background media that are LTI and lossless, as well as to arbitrary
probing fields, including near fields which are relevant, e.g., in super-resolution imaging. Moreover, the
background can be anisotropic and nonreciprocal. Importantly, as in the previous key paper [22], the
scatterer itself can be very general. For instance, it can be electromagnetically nonlinear, time-varying,
and lossy. In fact, perhaps the main appeal of the time-domain optical theorem is its applicability to
arbitrary targets that can be time-varying and nonlinear, for which the frequency domain theory of
most previous work (relevant only to LTI scatterers) is not applicable.

It is worth emphasizing that even though the scatterer itself is entirely arbitrary, the background
medium in which the scatterer is embedded must be lossless. This is required to be able to measure
electromagnetic interaction or power associated to the source induced in the scatterer in the form of a
reaction. In addition, the LTI nature of the background is also required to ensure that the reciprocity
theorem of the convolution type holds, see, e.g., [24]. This in turn enables the remote sensing of
scattering-linked power in the form of a force or field (with an antenna) which is, in essence, the
practical implementation and meaning of the optical theorem.

We conclude this introduction with remarks about the notation adopted in the following. We denote
time and position vector in three-dimensional space as t ∈ R and r ∈ R

3, respectively. For simplicity, we
do not use the familiar boldface font for vector fields, for example, the electric field is denoted simply as
E(r, t). In addition, we conveniently introduce the convolution inner product � defined for any vector
fields F and G as

(F � G)(r, t) ≡
∫ ∞

−∞
dτF (r, τ) · G(r, t − τ). (1)

It follows from a well-known convolution property that

F � ∂

∂t
G =

∂

∂t
F � G =

∂

∂t
(F � G), (2)

a result to be recalled later. We also introduce the convolution cross product ⊗ defined as

(F ⊗ G)(r, t) ≡
∫ ∞

−∞
dτF (r, τ) × G(r, t − τ). (3)

Similarly, we consider the time reversal operation ¯ defined as

F̄ (r, t) ≡ F (r,−t) (4)

and introduce the correlation inner product � defined as

(F � G)(r, t) ≡ (F̄ � G)(r, t) =
∫ ∞

−∞
dτF (r, τ) · G(r, t + τ) (5)

as well as the correlation cross product � defined as

(F � G)(r, t) ≡ (F̄ ⊗ G)(r, t) =
∫ ∞

−∞
dτF (r, τ) × G(r, t + τ). (6)

Note that F � G = G � F and F ⊗ G = −G ⊗ F while (F � G)(t) = (G � F )(−t) and (F � G)(t) =
−(G � F )(−t).

2. PROBLEM FORMULATION, RECIPROCITY, AND INTERACTION RELATIONS
IN THE TIME DOMAIN

We consider an arbitrary scatterer embedded in a general locally-reacting, LTI, lossless, anisotropic
background medium. The background is in general nonhomogeneous and can be nonreciprocal. It
is assumed that the background medium is made of material of finite spatial extent so that the
background’s constitutive properties are equal to those of free space at infinity. The fields generated by
sources and scatterers behave as outgoing waves at infinity. The scatterer is assumed to be of compact
spatial support V0 but is otherwise quite general. For example, the medium constituting the scatterer
can be nonlinear, time-varying, and lossy.
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The starting point is provided by Maxwell’s equations in the background medium, in particular,

∇× E(r, t) = −M(r, t) − ∂

∂t
B(r, t)

∇× H(r, t) = J(r, t) +
∂

∂t
D(r, t)

(7)

where E, H, D, B, J , and M denote, respectively, the electric field, the magnetic field, the electric flux
density, the magnetic flux density, the impressed electric current density, and the impressed magnetic
current density. In the background medium, the electric flux density D is given by

D(r, t) = ε(r, t) � E(r, t) (8)

where ε is the background medium’s permittivity tensor. The magnetic flux density B is given by

B(r, t) = μ(r, t) � H(r, t) (9)

where μ is the permeability tensor of the background.
To develop the optical theorems in a framework applicable to both reciprocal and nonreciprocal

media, we consider the complementary medium in which the permittivity and permeability are given
by

εC(r, t) = εT (r, t)

μC(r, t) = μT (r, t)
(10)

where T denotes the transpose. If εT = ε and μT = μ the medium is reciprocal. If these conditions do
not hold the medium is nonreciprocal.

Consider any two pairs of sources J1, M1 and J2, M2 having respective supports V1 and V2. Sources
“1” generate fields E1, H1 in the background medium. The same sources generate fields EC

1 , HC
1 in

the complementary medium. Sources “2” generate fields E2, H2 in the background. The same sources
generate fields EC

2 , HC
2 in the complementary medium. We develop next the fundamental reciprocity

relations describing the reaction and interaction of these two sets of sources and their fields.
It is well known (see [25], Eq. (24), and [26]) that the following modified reciprocity theorem holds:∫

V1

dV
[(

EC
2 � J1

)
(r, t) − (

HC
2 � M1

)
(r, t)

]
=

∫
V2

dV [(E1 � J2)(r, t) − (H1 � M2)(r, t)] . (11)

In the special case in which the background is reciprocal then EC
2 = E2, HC

2 = H2 so that this reduces
to the familiar Lorentz reciprocity theorem.

We develop next two correlation-type reciprocity relations which define the signal processing
associated to the optical theorems of this work. The starting point is provided by the background
medium Maxwell equations corresponding to sources and fields “1”, which we write as

∇× E1(r, τ) = −M1(r, τ) − ∂

∂τ
B1(r, τ)

∇× H1(r, τ) = J1(r, τ) +
∂

∂τ
D1(r, τ).

(12)

The corresponding equations for sources and fields “2” are

∇× E2(r, τ) = −M2(r, τ) − ∂

∂τ
B2(r, τ)

∇× H2(r, τ) = J2(r, τ) +
∂

∂τ
D2(r, τ).

(13)

Substituting τ by t + τ in the above result we obtain

∇× E2(r, t + τ) = −M2(r, t + τ) − ∂

∂τ
B2(r, t + τ)

∇× H2(r, t + τ) = J2(r, t + τ) +
∂

∂τ
D2(r, t + τ).

(14)
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Multiplying the first of Eq. (12) by H2(r, t + τ) (i.e., applying H2(r, t + τ)·) one obtains

H2(r, t + τ) · [∇× E1(r, τ)] = −H2(r, t + τ) · M1(r, τ) − H2(r, t + τ) · ∂

∂τ
B1(r, τ). (15)

Multiplying the last of Eq. (14) by E1(r, τ) we get

E1(r, τ) · [∇× H2(r, t + τ)] = E1(r, τ) · J2(r, t + τ) + E1(r, τ) · ∂

∂τ
D2(r, t + τ). (16)

It follows from Eqs. (15), (16) and the vector identity

∇ · (A × B) = B · ∇ × A − A · ∇ × B (17)

that

∇ · [E1(r, τ) × H2(r, t + τ)] = −H2(r, t + τ) · M1(r, τ) − E1(r, τ) · J2(r, t + τ)

−H2(r, t + τ) · ∂

∂τ
B1(r, τ) − E1(r, τ) · ∂

∂τ
D2(r, t + τ). (18)

By means of a similar procedure involving the last of Eq. (12) and the first of Eq. (14) one also
obtains

∇ · [E2(r, t + τ) × H1(r, τ)] = −H1(r, τ) · M2(r, t + τ) − E2(r, t + τ) · J1(r, τ)

−H1(r, τ) · ∂

∂τ
B2(r, t + τ) − E2(r,+τ) · ∂

∂τ
D1(r, τ). (19)

For the special case in which sources and fields “1” are identical to sources and fields “2”, and for
t = 0, the above results, Eqs. (18), (19), reduce to the differential form of Poynting’s theorem:

∇ · [E1(r, τ) × H1(r, τ)] = −H1(r, τ) · M1(r, τ) − E1(r, τ) · J1(r, τ)

−H1(r, τ) · ∂

∂τ
B1(r, τ) − E1(r, τ) · ∂

∂τ
D1(r, τ). (20)

This connection is important. It reveals that the correlation reciprocity relations to be developed next
can be interpreted as a generalization of the familiar electromagnetic energy conservation relation based
on Poynting’s theorem. The left side term in Eq. (20) is related to the flux density of power exiting the
differential volume. The first two source-field interaction terms in the right side of Eq. (20) define the
density of power put by the sources. Finally, the last two terms in the right side of the same equation
define the time rate at which energy is stored in the differential volume, which is usually termed the
reactive power density.

Adding Eqs. (18) and (19) and integrating the resulting expression over τ we get

∇ · [E1 � H2 − H1 � E2] = −M1 � H2 − H1 � M2 − E1 � J2 − J1 � E2

− ∂

∂t
B1 � H2 − H1 � ∂

∂t
B2 − E1 � ∂

∂t
D2 − ∂

∂t
D1 � E2 (21)

where we conveniently suppress the space-time dependence (r, t) with the implicit understanding that
all the quantities appearing in the formulation depend on time and position. Also, subtracting Eqs. (18)
and (19) and integrating over τ we obtain

∇ · [E1 � H2 + H1 � E2] = −M1 � H2 + H1 � M2 − E1 � J2 + J1 � E2

− ∂

∂t
B1 � H2 + H1 � ∂

∂t
B2 − E1 � ∂

∂t
D2 +

∂

∂t
D1 � E2. (22)

In view of Eqs. (2), (5), (8), (9), the result in Eq. (21) can be written in the following form which
is consistent with a result derived earlier in [25], Eq. (29):

∇ · [E1 � H2 − H1 � E2] = −M1 � H2 − H1 � M2 − E1 � J2 − J1 � E2

+
∂

∂t

{
H̄1 �

[(
μ̄T − μ

) � H2

]}
+

∂

∂t

{
Ē1 �

[(
ε̄T − ε

) � E2

]}
(23)

which conveniently reduces to

∇ · [E1 � H2 − H1 � E2] = −M1 � H2 − H1 � M2 − E1 � J2 − J1 � E2 (24)
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if the condition

εT (r,−t) = ε(r, t)

μT (r,−t) = μ(r, t)
(25)

holds. In the rest of the paper we assume this condition corresponding to a lossless background. For
the special case of a nondispersive medium for which the permittivity and permeability are of the form

ε(r, t) = ε0(r)δ(t)
μ(r, t) = μ

0
(r)δ(t) (26)

where δ(·) is Dirac’s delta function and where ε0 and μ0 are space-dependent dyadics, this further
implies that the medium is reciprocal, in particular, εT

0 = ε0 and μT
0

= μ
0
.

Similarly, in view of Eqs. (2), (5), (8), (9) the result in Eq. (22) reduces to

∇ · [E1 � H2 + H1 � E2] = −M1 � H2 + H1 � M2 − E1 � J2 + J1 � E2

+2
∂

∂t
[H̄1 � (μ � H2)] + 2

∂

∂t
[Ē1 � (ε � E2)]. (27)

The correlation reciprocity relation in Eq. (27) has linkages to the reactive energy and appears to be
new.

The integral form of (24) follows from the divergence theorem and can be written as∫
∂V

dSn̂ · (E1 � H2 − H1 � E2) = −
∫

V1

dV (M1 � H2 + J1 � E2) −
∫

V2

dV (H1 � M2 + E1 � J2) (28)

where V is a volume containing V1 and V2 (V1 ⊆ V and V2 ⊆ V ), ∂V is the boundary of V , dS is
surface differential element, and n̂ is the unit vector in the outward-normal direction associated to the
differential element. Similarly, the integral form of Eq. (27) is∫

∂V
dSn̂ · (E1 � H2 + H1 � E2) =

∫
V1

dV (−M1 � H2 + J1 � E2) +
∫

V2

dV (H1 � M2 − E1 � J2)

+2
∂

∂t

∫
V

dV
{
H̄1 �

[
μ � H2

]
+ Ē1 � [ε � E2]

}
. (29)

Two classes of time-domain optical theorems follow from the key results in Eqs. (28), (29). The first
class is the most general and will be referred to in the rest of the paper as “cross-correlation-type optical
theorems” or simply “correlation-type optical theorems”. The second class is an important special case
of the former, corresponding to “autocorrelations” as opposed to the more general “cross-correlations”
of the general theory. As we shall see next the autocorrelations in question correspond to the physical
electromagnetic energies. We shall term this special class “autocorrelation-type optical theorems” or
simply “energy-type optical theorems”.

Furthermore, within each class, “correlation-type” and “autocorrelation” or energy-type, we shall
develop both general and special forms of the optical theorem. The key result in Eq. (28) will lead to
the new correlation-type and energy-type generalized optical theorems. The special form of Eq. (28)
corresponding to identical sources and fields “1” and “2” will lead to the new correlation-type and
energy-type ordinary optical theorems. On the other hand, the general expression (29) will lead to
the new correlation-type reactive optical theorem and an associated correlation-type generalized optical
theorem related to the reactive power. The latter gives, as a special case, an energy-type generalized
optical theorem related to the reactive power.

We conclude this section with the associated precursor relations for the ordinary and reactive optical
theorems. In particular, for the special case in which the sources and fields “1” and “2” are identical
the key result in Eq. (28) takes the form∫

∂V
dSn̂ · (E1 � H1 − H1 � E1) = −

∫
V1

dV (M1 � H1 + J1 � E1 + H1 � M1 + E1 � J1). (30)



6 Marengo and Tu

This result is the precursor of the ordinary optical theorems derived in this work. The correlation-type
ordinary optical theorem follows from the general expression (30). The more specialized energy-type
version is derived by evaluating Eq. (30) for t = 0, which gives∫ ∞

−∞
dτ

∫
∂V

dSn̂ · [E1(r, τ)×H1(r, τ)] = −
∫ ∞

−∞
dτ

∫
V1

dV [M1(r, τ) ·H1(r, τ) + J1(r, τ) ·E1(r, τ)]. (31)

The term in the left side of this equation is the total radiated energy. It is equal to the time-integrated
sum of the source-field interaction integrals in the right side of the equation. Appendix A provides
further interpretative results pertinent to Eqs. (30), (31).

Similarly, for the special case in which the sources and fields “1” and “2” are identical, the key
result in Eq. (29) becomes∫

∂V
dSn̂ · (E1 � H1 + H1 � E1) =

∫
V1

dV (−M1 � H1 + J1 � E1 + H1 � M1 − E1 � J1)

+2
∂

∂t

∫
V

dV
[
H̄1 � (μ � H1) + Ē1 � (ε � E1)

]
. (32)

Evaluating this for t = 0 we get that the time-integrated sum of the electric and magnetic reactive
powers is equal to zero, i.e.,∫ ∞

−∞
dτ

∫
V

dV

[
H1(r, τ) · ∂

∂τ
B1(r, τ) + E1(r, τ) · ∂

∂τ
D1(r, τ)

]
= 0. (33)

For t 	= 0 the general expression (32) can be exploited to gain information about the reactive energy,
near field dynamics, which motivates the new correlation-type reactive optical theorem.

3. SCATTERING FORMULATION IN THE TIME DOMAIN

To develop the optical theorems we formulate electromagnetic scattering in a general framework that is
applicable to scatterers composed of any kind of material, which can be electromagnetically nonlinear
and time-varying. On the other hand, first we develop the basic ideas in the familiar context of LTI
media. Later we establish the extensions to arbitrary scatterers and adopt them in the remainder of
the paper.

Let Vs be the surveillance or scattering region where the scatterer of support V0 ⊆ Vs is contained.
The scatterer is embedded in the background medium having permittivity and permeability dyadics ε
and μ, respectively. It follows from (7) that when the scatterer is interrogated by quite arbitrary sources

labelled “n” which are located outside the volume Vs the corresponding probing fields E
(n)
i , H

(n)
i due

to those sources obey in Vs

∇× E
(n)
i (r, t) = − ∂

∂t
B

(n)
i (r, t)

∇× H
(n)
i (r, t) =

∂

∂t
D

(n)
i (r, t)

(34)

where D
(n)
i and B

(n)
i are the electric and magnetic flux densities associated to the electric and magnetic

fields E
(n)
i and H

(n)
i . In the background Eq. (34) can be written as

∇× E
(n)
i (r, t) = − ∂

∂t
(μ � H

(n)
i )(r, t)

∇× H
(n)
i (r, t) =

∂

∂t
(ε � E

(n)
i )(r, t).

(35)

Let εt and μ
t

be, respectively, the permittivity and permeability dyadics of the total medium
composed by the background plus the scatterer. It follows that, relative to the background, the
scatterer’s constitutive properties are δε = εt − ε and δμ = μ

t
− μ. The total fields E

(n)
t , H

(n)
t in
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the total medium composed by the background plus the scatterer upon the excitation by sources “n”
located outside Vs obey in Vs

∇× E
(n)
t (r, t) = − ∂

∂t
B

(n)
t (r, t)

∇× H
(n)
t (r, t) =

∂

∂t
D

(n)
t (r, t).

(36)

This can be written in terms of the fields as

∇× E
(n)
t (r, t) = − ∂

∂t
(δμ � H

(n)
t )(r, t) − ∂

∂t
(μ � H

(n)
t )(r, t)

∇× H
(n)
t (r, t) =

∂

∂t
(δε � E

(n)
t )(r, t) +

∂

∂t
(ε � E

(n)
t )(r, t).

(37)

It follows from Eqs. (35), (37) that the scattered fields

E(n)
s (r, t) = E

(n)
t (r, t) − E

(n)
i (r, t)

H(n)
s (r, t) = H

(n)
t (r, t) − H

(n)
i (r, t)

(38)

obey

∇× E(n)
s (r, t) = −M (n)

s (r, t) − ∂

∂t
(μ � H(n)

s )(r, t)

∇× H(n)
s (r, t) = J (n)

s (r, t) +
∂

∂t
(ε � E(n)

s )(r, t)
(39)

where we have conveniently introduced the electric and magnetic sources, J
(n)
s and M

(n)
s , respectively,

that are induced in the scatterer upon excitation by the sources labeled “n” located outside the scattering
region Vs. They are given by

J (n)
s (r, t) =

∂

∂t
(δε � E

(n)
t )(r, t)

M (n)
s (r, t) =

∂

∂t
(δμ � H

(n)
t )(r, t).

(40)

The scattered fields E
(n)
s , H

(n)
s are uniquely defined by Eq. (39) subject to the requirement that they

behave as outgoing waves at infinity.
Expressions (35), (36) hold for arbitrary scatterers. The particular expressions (40) for the induced

sources J
(n)
s , M

(n)
s hold only for LTI scatterers. On the other hand, expression (39) and the associated

outgoing wave radiation condition for the scattered fields hold for any scatterer including those for which
the map from the total fields E

(n)
t , H

(n)
t to the sources induced in the scatterer J

(n)
s , M

(n)
s is nonlinear

or time-varying.

3.1. Field Measurements

To formulate the optical theorems, we need to define how to implement scattered field measurements.
It follows from antenna theory that the most general measurement of the scattered fields E

(n)
s , H

(n)
s is

of the form
V (m,n)(t) =

∫
Vr

dV
[(

E(n)
s � h(m)

e

)
(r, t) −

(
H(n)

s � h(m)
m

)
(r, t)

]
(41)

where Vr represents the probe region of localization, V (m,n) represents the output voltage due to the
sensing of fields E

(n)
s , H

(n)
s with electric and magnetic probe modes labeled “m” and characterized by

local impulse responses h
(m)
e and h

(m)
m , respectively. In view of the reciprocity theorem Eq. (11) the

value of the voltage V (m,n) is given in terms of the sources of the scattered field, i.e., the induced sources
J

(n)
s , M

(n)
s , via

V (m,n)(t) =
∫

Vs

dV
[(

E
C(m)
h � J (n)

s

)
(r, t) −

(
H

C(m)
h � M (n)

s

)
(r, t)

]
(42)
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where E
C(m)
h , H

C(m)
h are the electric and magnetic fields generated by electric and magnetic sources

h
(m)
e , h

(m)
m which obey Maxwell’s equations in the complementary medium defined in Eq. (10), namely,

∇× E
C(m)
h (r, t) = −h(m)

m (r, t) − ∂

∂t
(μC � H

C(m)
h )(r, t)

∇× H
C(m)
h (r, t) = h(m)

e (r, t) +
∂

∂t
(εC � E

C(m)
h )(r, t)

(43)

plus the radiation condition at infinity.

4. THE ORDINARY OPTICAL THEOREM IN THE TIME DOMAIN

The correlation-type form of the ordinary optical theorem follows from Eq. (31) with the substitutions
of E1, H1 for the scattered fields E

(n)
s , H

(n)
s , and of J1, M1 for the induced sources J

(n)
s , M

(n)
s . In

addition, we substitute V1 for Vs and ∂V for the boundary ∂Vs of Vs. We also borrow from (38). We
obtain the following correlation-type optical theorem:

U (n)+(t) = S(n,n)+
e (t) + S

(n,n)+
d (t) (44)

where
U (n)+(t) =

1
2

[
U (n)(t) + U (n)(−t)

]
, (45)

where U (n) is the quantity defined by

U (n) =
∫

Vs

dV
(
H

(n)
i � M (n)

s + E
(n)
i � J (n)

s

)
=

∫
Vs

dV
(
H̄

(n)
i � M (n)

s + Ē
(n)
i � J (n)

s

)
, (46)

and where
S(n,n)+

e (t) =
1
2

[
S(n,n)

e (t) + S(n,n)
e (−t)

]
(47)

where
S(n,n)

e =
∫

∂V s

dSn̂ ·
(
E(n)

s � H(n)
s

)
, (48)

while
S

(n,n)+
d (t) =

1
2

[
S

(n,n)
d (t) + S

(n,n)
d (−t)

]
(49)

where
S

(n,n)
d =

∫
Vs

dV
(
H

(n)
t � M (n)

s + E
(n)
t � J (n)

s

)
. (50)

To complete the statement of the optical theorem, it is necessary to specify how to implement
the key measurement in Eq. (46) using probes located outside the scattering region Vs. It follows
from Eqs. (41), (42), (46) that U (n)(t) can be measured in the form of a scattered field measurement
V (n,n)(t) as defined in Eq. (41), i.e., U (n)(t) = V (n,n)(t), where according to (42) the required electric
and magnetic field probes characterized by the local impulse response functions h

(n)
e , h

(n)
m are such that

they generate, when operating as transmitters, the time-reversed incident fields Ē
(n)
i , −H̄

(n)
i for r ∈ Vs

in the complementary medium defined in (10), in particular,

E
C(n)
h (r, t) = E

(n)
i (r,−t) r ∈ Vs

H
C(n)
h (r, t) = −H

(n)
i (r,−t) r ∈ Vs.

(51)

Furthermore, for the important case of an incident electromagnetic pulse passing by the scattering region
Vs in a finite, time interval, say, [0, T ], it suffices that (51) be obeyed within that interval. It is not hard
to show from Maxwell’s equations for the complementary medium (and manipulations involving the
vector analogues of Green’s theorem and Kirchhoff’s integral formula [27], sec. 10.6) that these fields
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are realizable using sources located outside Vs, thus the optical theorem measurement is realizable with
probes located outside Vs. Thus for probes (h(n)

e , h
(n)
m ) having these characteristics, the optical theorem

expression (44) can be written in terms of the scattering measurement V (n,n)(t) as

V (n,n)+(t) = U (n)+(t) = S(n,n)+
e (t) + S

(n,n)+
d (t) (52)

where
V (n,n)+(t) =

1
2

[
V (n,n)(t) + V (n,n)(−t)

]
. (53)

Here it is very important to point out that the actual probes (h(n)
e , h

(n)
m ) used to implement in practice

the optical theorem in Eq. (52) are nonunique, since there is an infinite number of sources outside Vs

that generate the fields in Eq. (51). This fundamental nonuniqueness of optical theorem detectors has
been elaborated for scalar fields in free space in [28].

The energy-type form of the ordinary optical theorem follows from Eq. (31) via the same
substitutions or, equivalently, by evaluating the expression for the correlation-type optical theorem in
Eq. (52) for t = 0. In particular, the extinct energy, taken away from the probing beam by the scatterer,
is equal to U (n)+(0) = U (n)(0), which is given from Eqs. (45), (46) by

U (n)+(0) =
∫ ∞

−∞
dτ

∫
Vs

dV
[
H

(n)
i (r, τ) · M (n)

s (r, τ) + E
(n)
i (r, τ) · J (n)

s (r, τ)
]
. (54)

As expected, it is given by the integral of the interaction of the incident field (E(n)
i , H

(n)
i ) with the

source (J (n)
s , M

(n)
s ) that is induced in the scatterer. Note that if the incident electromagnetic pulse

passes by the scattering region Vs in a finite time window, say [0, T ], then the only relevant value of the
induced source is the one corresponding to that particular interval. Furthermore, it follows from Eq.
(41) that the extinct energy can be measured with probes h

(n)
e , h

(n)
m located outside the scattering region

Vs via an optical theorem measurement of the form

V (n,n)+(0) =
∫ ∞

−∞
dτ

∫
Vr

dV
[
E(n)

s (r, τ) · h(n)
e (r,−τ) − H(n)

s (r, τ) · h(n)
m (r,−τ)

]
(55)

where the probes (h(n)
e (r, t), h

(n)
m (r, t)) obey the required conditions in Eq. (51). In addition, the source-

field correlation function S
(n,n)+
e (t) reduces for t = 0 to the total (over all time) scattered energy,

S(n,n)+
e (0) = Energy(n)

s =
∫ ∞

−∞
dτ

∫
∂V s

dSn̂ ·
[
E(n)

s (r, τ) × H(n)
s (r, τ)

]
. (56)

Also, the source-field correlation function S
(n,n)+
d (t) reduces for t = 0 to the total energy that is

dissipated in the scatterer,

S
(n,n)+
d (0) = Energy(n)

d =
∫ ∞

−∞
dτ

∫
Vs

dV
[
M (n)

s (r, τ) · H(n)
t (r, τ) + J (n)

s (r, τ) ·E(n)
t (r, τ)

]
. (57)

In summary, evaluating Eq. (52) for t = 0 and using Eqs. (56), (57) we obtain the energy-type ordinary
optical theorem:

V (n,n)(0) = U (n)(0) = Energy(n)
s + Energy(n)

d . (58)

5. THE REACTIVE OPTICAL THEOREM IN THE TIME DOMAIN

The correlation-type reactive optical theorem, which generalizes the frequency-domain results in [5],
sec. V, is obtained from (32) with the substitutions E1, H1 → E

(n)
s , H

(n)
s , J1, M1 → J

(n)
s , M

(n)
s ,

V1 → Vs, and ∂V → ∂Vs. We obtain the result

W (n)−(t) = S(n,n)−
e (t) + S(n,n)−

r (t) + δS(n,n)
r (t) (59)

where
W (n)−(t) =

1
2

[
W (n)(t) − W (n)(−t)

]
(60)
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where

W (n) =
∫

Vs

dV
(
−H

(n)
i � M (n)

s + E
(n)
i � J (n)

s

)
=

∫
Vs

dV
(
−H̄

(n)
i � M (n)

s + Ē
(n)
i � J (n)

s

)
, (61)

and

δS(n,n)
r = − ∂

∂t

∫
Vs

dV
[
H̄(n)

s � (μ � H(n)
s ) + Ē(n)

s � (ε � E(n)
s )

]
, (62)

S(n,n)−
e (t) =

1
2

[
S(n,n)

e (t) − S(n,n)
e (−t)

]
, (63)

and
S(n,n)−

r (t) =
1
2

[
S(n,n)

r (t) − S(n,n)
r (−t)

]
(64)

where
S(n,n)

r (t) =
∫

Vs

dV
(
−H

(n)
t � M (n)

s + E
(n)
t � J (n)

s

)
. (65)

The result in Eq. (59) is the reactive optical theorem for special cases in which the quantity W (n)

is measurable with probes located outside the scattering region Vs. In particular, the quantity W (n)

cannot in general be measured as a scattered field measurement of the form (41), (42). However, if either
J

(n)
s or M

(n)
s is zero, e.g., as in a purely dielectric or purely magnetic material, respectively, then the

quantity W (n) can be measured. Consider first the particular case of a scatterer made of a nonmagnetic
material so that M

(n)
s = 0, which implies that Eqs. (61), (65) reduce to

W (n) =
∫

Vs

dV
(
E

(n)
i � J (n)

s

)
=

∫
Vs

dV
(
Ē

(n)
i � J (n)

s

)

S(n,n)
r =

∫
Vs

dV
(
E

(n)
t � J (n)

s

)
.

(66)

In this case W (n) can be measured as a scattered field measurement V (n,n) where the probe modes
characterized by h

(n)
e , h

(n)
m are such that when h

(n)
e , h

(n)
m act as sources (transmitters) they generate, in

the complementary medium, fields E
C(n)
h , H

C(n)
h obeying Eq. (43) in the scattering region Vs. Another

relevant special case is that of a nondielectric material for which J
(n)
s = 0. In this case W (n) can

be measured as a scattered field measurement V (n,n) where h
(n)
e , h

(n)
m are such that they generate, in

their transmit counterpart function, the fields E
C(n)
h = −Ē

(n)
i , H

C(n)
h = H̄

(n)
i in Vs when radiating in

the complementary medium. These fields are realizable using sources outside Vs, thus for both purely
dielectric and purely magnetic materials the result in Eq. (59) is a reactive optical theorem that can be
implemented in practice.

6. THE GENERALIZED OPTICAL THEOREMS IN THE TIME DOMAIN

Let V (m,n) be the scattered field measurement defined in Eq. (41) where the probes characterized by
the local impulse response functions h

(m)
e , h

(m)
m are such that they generate, in transmit mode, the fields

given by Eq. (51), with n substituted by m, in the complementary medium defined in Eq. (10). Then
from Eq. (42)

V (m,n) =
∫

Vr

dV
(
H(n)

s � h(m)
m + E(n)

s � h(m)
e

)
=

∫
Vs

dV
(
H̄

(m)
i � M (n)

s + Ē
(m)
i � J (n)

s

)
. (67)

The correlation-type generalized optical theorem follows from (28) after the substitutions E1,H1 →
E

(m)
s ,H

(m)
s , J1,M1 → J

(m)
s ,M

(m)
s , V1 → Vs, ∂V → ∂Vs, and E2,H2 → E

(n)
s ,H

(n)
s , J2,M2 → J

(n)
s ,M

(n)
s ,

and V2 → Vs. In view of Eqs. (51), (67), it can be conveniently stated directly in terms of the required
generalized optical theorem measurement V (m,n) as

V (m,n)+(t) = S(m,n)+
e (t) + S

(m,n)+
d (t) (68)
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where

V (m,n)+(t) =
1
2

[
V (m,n)(t) + V (n,m)(−t)

]
, (69)

S(m,n)+
e (t) =

1
2

[
S(m,n)

e (t) + S(n,m)
e (−t)

]
(70)

where
S(m,n)

e =
∫

∂V s

dSn̂ ·
(
E(m)

s � H(n)
s

)
, (71)

and
S

(m,n)+
d (t) =

1
2

[
S

(m,n)
d (t) + S

(n,m)
d (−t)

]
(72)

where
S

(m,n)
d =

∫
Vs

dV
(
H

(m)
t � M (n)

s + E
(m)
t � J (n)

s

)
. (73)

Evaluating (68) for t = 0 gives the energy-type generalized optical theorem. The latter is an
important special case since its ordinary counterpart corresponding to m = n characterizes the energy
extinction of the scattering by probing field mode “n’, as explained earlier.

We obtain a complementary generalized optical theorem based on Eq. (29) via the same procedure
used to obtain Eq. (68). For reasons already explained in connection with the discussion of Eq. (59),
we assume next nonmagnetic scatterers. Similar results hold for nondielectric scatterers. We get

V (m,n)−(t) = S(m,n)−
e (t) + S(m,n)−

r (t) + δS(m,n)
r (74)

where

V (m,n)−(t) =
1
2

[
V (m,n)(t) − V (m,n)(−t)

]
, (75)

S(m,n)−
e (t) =

1
2

[
S(m,n)

e (t) − S(m,n)
e (−t)

]
, (76)

S(m,n)−
r (t) =

1
2

[
S(m,n)

r (t) − S(m,n)
r (−t)

]
(77)

where
S(m,n)

r =
∫

Vs

dV
(
E

(m)
t � J (n)

s

)
, (78)

and
δS(m,n)

r = − ∂

∂t

∫
Vs

dV
[
H̄(m)

s � (μ � H(n)
s ) + Ē(m)

s � (ε � E(n)
s )

]
. (79)

7. THE SPECIAL CASE OF FREE SPACE AND PLANE WAVES

In this section we show that the optical theorem results derived in this paper are consistent with those of
prior work, particularly the pioneering work of Karlsson [20, 21] which focuses on homogeneous media
such as free space and plane wave excitation. In particular, we show that the energy-type ordinary
optical theorem in Eq. (58) reduces for free space and plane wave excitation to the results Eq. (2.5)
in [20] and Eq. (15) in [21].

In this section we focus on the particular case in which the scatterer is probed with a plane wave
traveling in the direction of the unit vector s0. The respective incident electric field (E(n)

i ) is given by
E0(t − s0 · r/c) where s0 · E0 = 0. Next, it is convenient to substitute the generic label “n” of the
preceding general theory by the particular label s0. This conveniently reminds us that the results hold
for excitation with a plane wave traveling in the direction s0. Thus, we shall denote the respective
scattered electric field as Es(r, t; s0) (instead of E

(n)
s ), and similarly the sources induced in the scatterer

will be denoted as Js(r, t; s0),Ms(r, t; s0) (instead of J
(n)
s , M

(n)
s ).
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It is not hard to show that the (scattered) electric field (Es) that is generated by sources (Js, Ms)
induced in a scatterer that is embedded in free space behaves in the far zone as

Es(rr̂, t; s0) ∼ Fs(r̂, t − r/c; s0)
r

(80)

where Fs is the far-field scattering amplitude, which is given in terms of the sources by ([29], Eqs. (46)–
(49))

Fs(r̂, t; s0) = −μ0

4π
∂

∂t
(1 − r̂r̂·)

[
Ĵs(r̂, t; s0) − r̂× M̂s(r̂, t; s0)/η)

]
(81)

where Ĵs and M̂s are the slant-stack transforms of Js and Ms, respectively, which are given by

Ĵs(r̂, t; s0) =
∫

Vs

dV Js(r, t + r̂ · r/c; s0)

M̂s(r̂, t; s0) =
∫

Vs

dV Ms(r, t + r̂ · r/c; s0).
(82)

Now, it follows from Eq. (81) with the substitution r̂ = s0 and the fact that s0 · E0 = 0 that

E0(t) ·
[
Ĵs(s0, t; s0) − s0 × M̂s(s0, t; s0)/η

]
= −4π

μ0
E0(t) ·

∫ t

−∞
dt′F (s0, t

′). (83)

It follows from Eqs. (54), (58) that the extinct energy under this plane wave excitation case is given
by

U =
∫

Vs

dV

∫ ∞

−∞
dtE0(t − s0 · r/c) · Js(r, t; s0) + s0 × H0(t−s0 · r/c) · Ms(r, t; s0)/η

=
∫

Vs

dV

∫ ∞

−∞
dt′E0(t′) · Js(r, t′ + s0 · r/c; s0) + s0 × E0(t′) · Ms(r, t′ + s0 · r/c; s0)/η

=
∫ ∞

−∞
dt′E0(t′) ·

[
Ĵs(ŝ0, t

′; s0) − s0 × M̂s(s0, t
′; s0)/η

]

= −4π
μ0

∫ ∞

−∞
dt′E0(t′) ·

∫ t′

−∞
dt′′Fs(s0, t

′′; s0), (84)

where we used the fact that the incident magnetic field is

Hi(r, t; s0) = s0 × E0(t − s0 · r/c)/η,

followed by the change of variable t → t′ + s0 · r/c, followed by a well known vector identity
(A · (B × C) = C · (A × B)), followed by Eq. (82), and finally by Eq. (83). The last equation in Eq.
(84) is identical to the statement of the optical theorem for free space and plane waves as derived by
Larsson in [20, 21], as we wanted to show.

8. NUMERICAL ILLUSTRATION

In this section we consider in two-dimensional (2D) space the scattering of an electromagnetic pulse
by a uniform circular cylinder of radius R. The scattering cylinder is surrounded by a background
medium consisting of two perfect electric conductor (PEC) plates that act as a corner reflector. In this
example, the background is the free space medium including the corner reflector. We focus on transverse
magnetic (TMz) modes having nonzero electric field component Ez and magnetic field components Hx

and Hy. The relevant scattering geometry is illustrated in Fig. 1. The corresponding propagation
and scattering is simulated computationally with the FDTD method. In this example, we consider a
9m×9m scattering region or region of interest (ROI). The boundaries located under and to the right of
the ROI are assumed to be open. Computationally, this is modeled via perfectly matched layer (PML)
absorbing boundary conditions, as shown in the figure. The probing field is generated by a point source
(Jz) whose position is shown in the figure. Its time-dependence is that of the modulated Gaussian
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PEC boundary

PEC
boundary

PML
boundary

+y

PML boundary +x

ROIScattered
Field

Scatterer

Probing
Field Source

Figure 1. Scattering geometry, showing the
probing source, the scatterer, and the corner
reflector which acts as the background. PEC
boundary conditions are applied to the top
and left sides (this is the corner reflector),
while PML boundary conditions are implemented
at the bottom and right sides of the FDTD
computational grid.
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Figure 2. Modulated Gaussian pulse used in the
simulation. Time t is in seconds.
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Figure 3. Extinct energy U and scattered
energy Se versus permittivity perturbation δε.
The dashed line represents U while the solid line
corresponds to Se.

E
ne

rg
y

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
×10-3

0 5 10 15 20 25
0r

Figure 4. Extinct energy U and scattered energy
Se for fixed δε = 0.1ε0 versus the normalized
radius r0 = R/Δ. The dashed line represents U
while the solid line corresponds to Se.

pulse shown in Fig. 2, which has 2.5 GHz center frequency and fractional bandwidth of 2. In the FDTD
simulations, we used a computational grid having space step Δx = Δy = Δ = 0.02 m, and time step
Δt = Δ/(

√
2c) where c is the free space speed of light. In the simulations, we considered scatterer radii

(R) in the range [0.02m, 0.5m].
To validate the ordinary optical theorem Eq. (58), we computed numerically the key terms

appearing in that theorem, namely, the total extinct energy V = U , the scattered energy Se = Energys,
and the dissipated energy Sd = Energyd, versus different scattering parameters. Figure 3 shows, for
fixed scatterer radius R = 0.4 m, the variation of U and Se versus permittivity perturbation δε ranging
from 0.01ε0 to ε0. In this example the scatterer is lossless so the total extinct energy must be equal to
the scattered energy. The plots of U and Se are, indeed, very similar, as expected. In another set of
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Figure 5. Extinct energy U and scattered energy
Se for fixed δε = 0.2ε0 versus the normalized
radius r0 = R/Δ. The dashed line represents U
while the solid line corresponds to Se.

E
ne

rg
y

0

0.5

1

1.5

2

2.5
×10-3

0 20 40 60 80
δ  /    ×100%0

Figure 6. Computed extinct energy versus δε
for two scatterers having R = 0.4 m, and centered
at (x, y) = (−1m, 0) and (1m, 0). Bold dashed
line: right scatterer. Bold solid line: left scatterer.
Thin solid line: sum of the individual extinct
energies. Dashed line: extinct energy computed
for the two scatterers together.

plots, Figs. 4 and 5 show U and Se as functions of the normalized scatterer radius r0 = R/Δ, which was
chosen to vary in the range [1, 25]. In these simulations we considered a lossless nonmagnetic scatterer
having δε = 0.1ε0 (in Fig. 4) and δε = 0.2ε0 (in Fig. 5). Again we find that, as expected, the plots of the
extinct and scattered energies based on the results of Section 4 are very similar. The minor differences
between the corresponding plots are attributed to the numerical truncation errors of the FDTD method.

We conclude with another example, which is inspired by an intriguing implication of the time-
domain optical theorem discussed in [20, 21]. In particular, the energy extincted by two scatterers is
not, in general, equal to the sum of the individual extinct energies of the scatterers. However, the
extinction is governed by the interaction of the incident field with the induced source in the scatterer
only in the time window in which the probing field passes by the scatterer’s support. Therefore, if two
scatterers are sufficiently far so that the induced source (in each scatterer), in said time window, is due
only to the incident field excitation, and not due to the field scattered by the neighboring scatterer,
then the extinction resulting from each scatterer remains identical to that which would be obtained if
that scatterer is alone. Thus for such well-separated scatterers the total extinct energy is equal to the
sum of the individual extinct energies of the scatterers. This was shown in [20, 21] for the case of an
unbounded homogeneous background probed by plane waves. The same principle applies to arbitrary
backgrounds and probing fields, as can be easily shown from the results in Section 6 (see the discussion
in Eqs. (51), (54). In the next set of figures we illustrate these ideas for the corner reflector background
medium. Figure 6 shows the results for two well-separated circular scatterers of radius R = 0.4 m. In
this case the scatterers are centered at positions (x, y) = (−1m, 0) (left scatterer) and (1m, 0) (right
scatterer). In this configuration the initial or early contribution to the incident pulse arrives at the
same time at both scatterers. The time window associated to the passing of this early probing pulse by
each scatterer is approximately equal to 2R/c. The distance 2R = 0.8m is shorter than the separation
distance of the two scatterers (equal to 1.2 m in this example). Thus the multiple scattering interaction
between the scatterers happens only after the early part of the probing pulse has passed their supports.
In addition to this early probing pulse contribution, there is a late contribution to the probing pulse due
to the reverberations at the reflector. Figure 6 shows that for small values of the scatterer permittivity
(weak scattering regime) the extinct energy is equal to the sum of the individual extinct energies, as
expected since in this limit the scatterers do not interact. The same figure also shows that the effect
of the late probing pulse contribution becomes more noticeable as the scatterer permittivity increases,
as expected. In particular, for sufficiently large scatterer permittivity (δε > 0.4ε0), the extinct energy
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Figure 7. Computed extinct energy versus δε
for two scatterers next to each other having
R = 0.4 m, and centered at (x, y) = (−1m, 0)
and (−0.2m, 0). The solid line is the sum of
the individual extinct energies. The dashed line
corresponds to the extinct energy computed for
the two scatterers together.
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Figure 8. Computed extinct energy versus δε
for two scatterers having R = 0.4 m, and centered
at (x, y) = (−1m, 4m) and (1m, 4m). The bold
dashed line applies to the right scatterer only. The
bold solid line applies to the left scatterer only.
The thin solid line is the sum of the individual
extinct energies. The dashed line corresponds to
the extinct energy computed for the two scatterers
together.
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Figure 9. Computed extinct energy versus δε for two scatterers having R = 0.4 m, and centered at
(x, y) = (−1m, 4m) and (−0.2m, 4m). Bold dashed line: right scatterer. Bold solid line: left scatterer.
Thin solid line: sum of the individual extinct energies. Dashed line: extinct energy computed for the
two scatterers together.

of the two-scatterer compound is no longer equal to the sum of the extinct energies of the individual
scatterers. Figure 7 shows the results for two scatterers of radius R = 0.4 m that are placed next to
each other. In this case the left scatterer is centered at (−1m, 0) while the right scatterer is centered at
(−0.2m, 0). In this case the scatterers are in close proximity, so that the extinct energy is approximately
given by the sum of the individual extinct energies only for small δε (corresponding to weak multiple
scattering). Figure 8 shows the corresponding results for well-separated scatterers that are placed near
the top PEC boundary, at positions (−1m, 4m) and (1m, 4m). In this case the late reverberating
contribution of the probing field passes by the scatterer’s support shortly after the early pulse, and the
multiple scattering interaction is insignificant within the passing window of the entire probing pulse.
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Consequently, the extinct energy is given by the sum of the individual extinct energies. Figure 9
illustrates the corresponding results when the two scatterers are placed next to each other, at positions
(−1m, 4m) and (−0.2m, 4m). As expected, in this case the total extinct energy is in general different
from the sum of the individual extinct energies. These two quantities are equal only for small values of
the scatterer permittivity δε, since then multiple scattering becomes negligible.

9. CONCLUSION

We have developed a very general formulation of the optical theorem in the time domain that applies
to arbitrary probing fields and media. The derived theoretical framework for the optical theorem in the
time domain is applicable to the most general scatterer, which can be time-varying and nonlinear, and
has important envisioned applications such as the validation of computational electromagnetics codes,
the fast computation of energy and field correlations, and the design of broadband detectors based
on the time domain optical theorem. The derived formulation covers not only the ordinary optical
theorem (which has been the focus of past work on the time-domain optical theorem), but also the
most general form of this result, known as the generalized optical theorem. Furthermore, two classes of
time-domain optical theorems were developed: correlation-type optical theorems, which are the most
general relations, as well as more specialized versions called autocorrelation- or energy-type optical
theorems. In the discussion of the practical implementation of the optical theorem to measure the
extinct energy using external electromagnetic probes or sensors, it was emphasized that the sensors in
question are inherently nonunique. Thus even though the statements of the optical theorems derived
in this work are universal, their implementations can take in practice on an infinitude of alternative,
equally viable forms (see [28]). To demonstrate the link between our general formulation and prior
work in this area, we showed that the ordinary form of the time-domain optical theorem presented in
this work renders the particular time-domain optical theorem for free space and plane wave excitation
derived in previous papers. The derived ordinary optical theorem results were illustrated with the help
of numerical examples in which the background medium is a corner reflector. The numerical results
confirmed the validity of the formulation and shed insight on important implications of the time-domain
optical theorem pointed out in this work and in previous papers in this area.

An interesting avenue for future research that is related to the work reported in this paper is the
application of the time-domain optical theorem to change detection with broadband fields. Prior related
work, within the simpler frequency-domain formulation, is reported in [23]. We are currently exploring
this area and plan to report on the associated research developments in the future.

APPENDIX A.

In the far zone

E1(rr̂, t) ∼ FE(r̂, t − r/c)
r

H1(rr̂, t) ∼ FH(r̂, t − r/c)
r

(A1)

where r ≡ |r|, r̂ ≡ r/r, and c = 1/
√

μ0ε0 is the free space speed of light where ε0 and μ0 are the free
space permittivity and permeability, respectively. In addition, FE and FH are the far-field radiation
patterns corresponding to the electric and magnetic fields, respectively, both of which are perpendicular
to r̂, and which are mutually related via

FH(r̂, t) = r̂ × FE(r̂, t)/η (A2)

where η =
√

μ0/ε0 is the free space impedance.
Using Eqs. (A1), (A2) we find that if the bounding surface ∂V is a large origin-centered sphere in

the far zone then ∫
∂V

dSn̂ · (E1 � H1)(r, t) =
1
η

∫
4π

dr̂(FE � FE)(r̂, t) (A3)
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which is the integral over the unit sphere of the autocorrelation of the electric far-field radiation pattern.
In view of a well-known property of the autocorrelation operation,

max
∫

∂V
dSn̂ ·(E1 �H1)(r, t) =

∫
∂V

dSn̂ ·(E1 �H1)(r, 0) =
1
η

∫ ∞

−∞
dt

∫
4π

dr̂[FE(r̂, t)]2 = Energyrad (A4)

where Energyrad denotes the radiated energy. Finally, it follows from Eqs. (30), (A4) and the correlation
operation properties mentioned after Eq. (6) that

Energyrad = −1
2

max
{∫

V1

dV (M1 � H1 + J1 � E1 + H1 � M1 + E1 � J1)
}

= −
∫ ∞

−∞
dt

∫
V1

dV [(M1 · H1)(r, t) + (J1 · E1)(r, t)] . (A5)
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