Vol. 151
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2015-05-18
Electromagnetic Field Transformations for Measurements and Simulations (Invited Paper)
By
Progress In Electromagnetics Research, Vol. 151, 127-150, 2015
Abstract
Electromagnetic field transformations are important for electromagnetic simulations and for measurements. Especially for field measurements, the influence of the measurement probe must be considered, and this can be achieved by working with weighted field transformations. This paper is a review paper on weighted field transformations, where new information on algorithmic properties and new results are also included. Starting from the spatial domain weighted radiation integral involving free space Green's functions, properties such as uniqueness and the meaning of the weighting function are discussed. Several spectral domain formulations of the weighted field transformation integrals are reviewed. The focus of the paper is on hierarchical multilevel representations of irregular field transformations with propagating plane waves on the Ewald sphere. The resulting Fast Irregular Antenna Field Transformation Algorithm (FIAFTA) is a versatile and efficient transformation technique for arbitrary antenna and scattering fields. The fields can be sampled at arbitrary irregular locations and with arbitrary measurement probes without compromising the accuracy and the efficiency of the algorithm. FIAFTA supports different equivalent sources representations of the radiation or scattering object: 1) equivalent surface current densities discretized on triangular meshes, 2) plane wave representations, 3) spherical harmonics representations. The current densities provide for excellent spatial localization and deliver most diagnostics information about the test object. A priori information about the test object can easily be incorporated, too. Using plane wave and spherical harmonics representations, the spatial localization is not as good as with spatial current densities, but still much better than in the case of conventional modal expansions. Both far-field based expansions lead to faster transformations than the equivalent currents and in particular the orthogonal spherical harmonics expansion is a very attractive and robust choice. All three expansions are well-suited for efficient echo suppression by spatial filtering. Various new field transformation and new computational performance results are shown in order to illustrate some capabilities of the algorithm.
Citation
Thomas F. Eibert, Emre Kilic, Carlos Lopez, Raimund A. M. Mauermayer, Ole Neitz, and Georg Schnattinger, "Electromagnetic Field Transformations for Measurements and Simulations (Invited Paper)," Progress In Electromagnetics Research, Vol. 151, 127-150, 2015.
doi:10.2528/PIER14121105
References

1. Maxwell, J. C., "A dynamical theory of the electromagnetic field," Philosophical Transactions of the Royal Society of London, 459-512, 1865 (First presented to the British Royal Society in 1864).

2. Kong, J. A., Electromagnetic Wave Theory, 2nd Edition, John Wiley & Sons, New York, 1990.

3. Balanis, C. A., Antenna Theory and Design, John Wiley & Sons, Hoboken, 2005.

4. Jin, J.-M., Theory and Computation of Electromagnetic Fields, Wiley-IEEE Press, Hoboken, 2010.
doi:10.1002/9780470874257

5. Carson, J. R., "Reciprocal theorems in radio communications," Proc. IRE, Vol. 17, 952-956, Jun. 1929.
doi:10.1109/JRPROC.1929.221772

6. Rumsey, V. H., "Reaction concept in electromagnetic theory," Physical Review, Vol. 94, No. 6, 1484-1494, 1954.
doi:10.1103/PhysRev.94.1483

7. Richmond, J. H., "A reaction theorem and its application to antenna impedance calculation," IRE Trans. on Antennas and Propag., 515-520, Nov. 1961.

8. Harrington, R.-F., Field Computation by Moment Methods, IEEE Press, Piscataway, 1992.

9. Chew, W. C., J.-M. Jin, E. Michielssen, and J. Song, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House Publishers, 2001.

10. Yla-Oijala, P., "Calculation of CFIE impedance matrix elements with RWG and n × RWG functions," IEEE Trans. on Antennas and Propag., Vol. 51, No. 8, 1837-1846, 2003.
doi:10.1109/TAP.2003.814745

11. Li, L. and T. F. Eibert, "A projection height independent adaptive radial-angular-R2 transformation for singular integrals," IEEE Trans. on Antennas and Propag., Vol. 62, No. 10, 5381-5386, 2014.
doi:10.1109/TAP.2014.2344103

12. Araque Quijano, J. L. and G. Vecchi, "Field and source equivalence in source reconstruction on 3D surfaces," Progress In Electromagnetics Research, Vol. 103, 67-100, 2010.
doi:10.2528/PIER10030309

13. Jorgensen, E., P. Meincke, and C. Cappellin, "Advanced processing of measured fields using field reconstruction techniques," European Conference on Antennas and Propagation, 3880-3884, Rome, Apr. 2011.

14. Kılıc, E. and T. F. Eibert, "A three-dimensional microwave imaging technique combining inverse equivalent current and finite element methods," XXXI URSI General Assembly and Scientific Symposium, Beijing, China, Aug. 2014.

15. Kılıc, E. and T. F. Eibert, "Solution of 3D inverse scattering problems by combined inverse equivalent current and finite element methods," Journal of Computational Physics, Vol. 288, 131-149, 2015.
doi:10.1016/j.jcp.2015.02.004

16. Bucci, O. V., G. d’Elia, G. Leone, and R. Pierri, "Far-field pattern determination from the near-field amplitude on two surfaces," IEEE Trans. on Antennas and Propag., Vol. 38, No. 11, 1772-1779, 1990.
doi:10.1109/8.102738

17. Isernia, T., G. Leone, and R. Pierri, "Radiation pattern evaluation from near-field intensities on planes," IEEE Trans. on Antennas and Propag., Vol. 44, No. 5, 701-710, 1996.
doi:10.1109/8.496257

18. Schnattinger, G., C. Lopez, E. Kılı¸c, and T. F. Eibert, "Fast near-field far-field transformation for phaseless and irregular antenna measurement data," Advances in Radio Science, Vol. 12, 171-177, 2014.
doi:10.5194/ars-12-171-2014

19. Lopez, C., R. A. M. Mauermayer, and T. F. Eibert, "Extending the plane wave based fast irregular antenna field transformation algorithm for amplitude-only data," European Conference on Antennas and Propagation, Lisbon, Portugal, Apr. 2015.

20. Yaghjian, A. D., "An overview of near-field antenna measurements," IEEE Trans. on Antennas and Propag., Vol. 34, No. 1, 30-45, 1986.
doi:10.1109/TAP.1986.1143727

21. Alvarez, Y., F. Las-Heras, and M. R. Pino, "Reconstruction of equivalent currents distribution over arbitrary three-dimensional surfaces based on integral equation algorithms," IEEE Trans. on Antennas and Propag., Vol. 55, No. 12, 3460-3468, 2007.
doi:10.1109/TAP.2007.910316

22. Eibert, T. F. and C. H. Schmidt, "Multilevel fast multipole accelerated inverse equivalent current method employing Rao-Wilton-Glisson discretization of electric and magnetic surface currents," IEEE Trans. on Antennas and Propag., Vol. 57, No. 4, 1178-1185, 2009.
doi:10.1109/TAP.2009.2015828

23. Eibert, T. F., Ismatullah, E. Kaliyaperumal, and C. H. Schmidt, "Inverse equivalent surface current method with hierarchical higher order basis functions, full probe correction and multilevel fast multipole acceleration," Progress In Electromagnetics Research, Vol. 106, 377-394, 2010.
doi:10.2528/PIER10061604

24. Petre, P. and T. K. Sarkar, "Planar near-field to far-field transformation using an equivalent magnetic current approach," IEEE Trans. on Antennas and Propag., Vol. 40, No. 11, 1348-1356, 1992.
doi:10.1109/8.202712

25. Eibert, T. F., "A diagonalized multilevel fast multipole method with spherical harmonics expansion of the k-space integrals," IEEE Trans. on Antennas and Propag., Vol. 53, No. 2, 814-817, 2005.
doi:10.1109/TAP.2004.841310

26. Alvarez, Y., F. Las-Heras, M. R. Pino, and J. A. Lopez, "Acceleration of the sources reconstruction method via the fast multipole method," IEEE Antennas Propag. Intern. Symp., San Diego, CA, 2008.

27. Schmidt, C. H., M. M. Leibfritz, and T. F. Eibert, "Fully probe-corrected near-field far-field transformation employing plane wave expansion and diagonal translation operators," IEEE Trans. on Antennas and Propag., Vol. 56, No. 3, 737-746, 2008.
doi:10.1109/TAP.2008.916975

28. Schmidt, C. H. and T. F. Eibert, "Multilevel plane wave based near-field far-field transformation for electrically large antennas in free-space or above material halfspace," IEEE Trans. on Antennas and Propag., Vol. 57, No. 5, 1382-1390, 2009.
doi:10.1109/TAP.2009.2016699

29. Qureshi, M. A., C. H. Schmidt, and T. F. Eibert, "Adaptive sampling in multilevel plane wave based near-field far-field transformed planar near-field measurements," Progress In Electromagnetic Research, Vol. 126, 481-497, 2012.
doi:10.2528/PIER12020804

30. Qureshi, M. A., C. H. Schmidt, and T. F. Eibert, "Efficient near-field far-field transformation for nonredundant sampling representation on arbitrary surfaces in near-field antenna measurements," IEEE Trans. on Antennas and Propag., Vol. 61, No. 4, 2025-2033, 2013.
doi:10.1109/TAP.2012.2231932

31. Yinusa, K. and T. F. Eibert, "A multi-probe antenna measurement technique with echo suppression capability," IEEE Trans. on Antennas and Propag., Vol. 61, No. 10, 5008-5016, 2013.
doi:10.1109/TAP.2013.2271495

32. Schnattinger, G. and T. F. Eibert, "Solution to the full vectorial 3D inverse source problem by multi-level fast multipole method inspired hierarchical disaggregation," IEEE Trans. on Antennas and Propag., Vol. 60, No. 7, 3325-3335, 2012.
doi:10.1109/TAP.2012.2196946

33. Kılıc, E. and T. F. Eibert, "An inverse scattering technique based on finite element — Boundary integral method," Progress In Electromagnetics Research Symposium Abstracts, 777, Stockholm, Sweden, Aug. 12–15, 2013.

34. Qureshi, M. A., C. H. Schmidt, and T. F. Eibert, "Near-field error analysis for arbitrary scanning grids using fast irregular antenna field transformation algorithm," Progress In Electromagnetics Research B, Vol. 48, 197-220, 2013.
doi:10.2528/PIERB12121502

35. Schnattinger, G., R. A. M. Mauermayer, and T. F. Eibert, "Monostatic radar cross section near-field far-field transformations by multilevel plane wave decomposition," IEEE Trans. on Antennas and Propag., Vol. 62, No. 8, 4259-4268, 2014.
doi:10.1109/TAP.2014.2323429

36. Fritzel, T., A. Geise, C. H. Schmidt, H.-J. Steiner, T. F. Eibert, O. Wiedenmann, and M. Paquay, "Concept of a portable antenna measurement system for large-scale and multi-contour near-field measurements," 35th ESA Antenna Workshop on Antenna and Free Space RF Measurements, ESA/ESTEC, Noordwijk, The Netherlands, 2013.

37. Bucci, O. M. and G. Franceschetti, "On the spatial bandwidth of scattered fields," IEEE Trans. on Antennas and Propag., Vol. 35, No. 12, 1445-1455, 1987.
doi:10.1109/TAP.1987.1144024

38. Bucci, O. M., C. Gennarelli, and C. Savarese, "Representation of electromagnetic fields over arbitrary surfaces by a finite and nonredundant number of samples," IEEE Trans. on Antennas and Propag., Vol. 46, No. 3, 351-359, 1998.
doi:10.1109/8.662654

39. Bucci, , O. M. and C. Gennarelli, "Application of nonredundant sampling representation of electromagnetic fileds to NF-FF transformation techniques," International Journal of Antennas and Propagation, Vol. 2012, 1-14, 2011.

40. Gregson, S., J. McCormick, and C. Parini, Principles of Planar Near-field Antenna Measurements, IET Electromagnetic Waves, UK, 2007.
doi:10.1049/PBEW053E_ch1

41. Hansen, J., Spherical Near-field Antenna Measurements, IEEE Electromagnetic Wave Series 26, UK, 1988.
doi:10.1049/PBEW026E_ch1

42. Laitinen, T., S. Pivnenko, J. M. Nielsen, and O. Breinbjerg, "Theory and practice of the FFT/matrix inversion technique for probe-corrected spherical near-field antenna measurements with higher-order probes," IEEE Trans. on Antennas and Propag., Vol. 58, No. 8, 2623-2631, 2010.
doi:10.1109/TAP.2010.2050437

43. Hansen, T. B., "Spherical near-field scanning with higher-order probes," IEEE Trans. on Antennas and Propag., Vol. 59, No. 11, 4049-4059, 2011.
doi:10.1109/TAP.2011.2164217

44. Hansen, T. B., "Exact Gaussian-beam theory for outgoing and standing spherical waves: Application to transmitting and receiving antennas," IEEE Trans. on Antennas and Propag., Vol. 60, No. 3, 1291-1302, 2012.
doi:10.1109/TAP.2011.2180342

45. Chew, W. C., T. J. Cui, and J. M. Song, "A FAFFA-MLFMA algorithm for electromagnetic scattering," IEEE Trans. on Antennas and Propag., Vol. 50, No. 11, 1641-1649, 2002.
doi:10.1109/TAP.2002.802162

46. Cui, T. J., W. C.Chew, G. Chen, and J. M. Song, "Efficient MLFMA, RPFMA, and FAFFA algorithms for EM scattering by very large structures," IEEE Trans. on Antennas and Propag., Vol. 52, No. 3, 759-770, 2004.
doi:10.1109/TAP.2004.825491

47. Hansen, T. B., "Translation operator based on Gaussian beams for the fast multipole method in three dimensions," Wave Motion, Vol. 50, 940-954, 2013.
doi:10.1016/j.wavemoti.2013.03.006

48. Tzoulis, A. and T. F. Eibert, "Efficient electromagnetic near-field computation by the multilevel fast multipole method employing mixed near-field/far-field translations," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 449-452, 2005.
doi:10.1109/LAWP.2005.860195

49. Eibert, T. F., "A multilevel fast spectral domain algorithm for electromagnetic analysis of infinite periodic arrays with large unit cells," Advances in Radio Science, Vol. 4, 111-115, 2006.

50. Bjorck, A., Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996.
doi:10.1137/1.9781611971484

51. Saad, Y., Iterative Methods for Sparse Linear Systems, PWS, Boston, 1996.

52. Sarvas, J., "Performing interpolation and anterpolation entirely by fast Fourier transform in the 3-D multilevel fast multipole algorithm," SIAM J. Numer. Anal., Vol. 41, No. 6, 2180-2196, 2003.
doi:10.1137/S0036142902405655

53. Jarvenpaa, S. and P. Yl¨a-Oijala, "A global interpolator with low sample rate for multilevel fast multipole algorithm," IEEE Trans. on Antennas and Propag., Vol. 61, No. 3, 1291-1300, 2013.
doi:10.1109/TAP.2012.2231927

54. Jarvenpaa, S. and P. Yla-Oijala, "Multilevel fast multipole algorithm with global and local interpolators," IEEE Trans. on Antennas and Propag., Vol. 62, No. 9, 4716-4725, 2014.
doi:10.1109/TAP.2014.2333056

55. Eibert, T. F., "Some scattering results computed by the hybrid finite element — Boundary integral — Multilevel fast multipole method," IEEE Antennas and Propag. Magazine, Vol. 49, No. 2, 61-69, Apr. 2007.
doi:10.1109/MAP.2007.376638

56. Rohde & Schwarz "Double ridged waveguide antenna,", http://www.rohde-schwarz.de/product/hf907.html.

57. Nearfield Systems Inc. "Antenna measurement solutions,", www.nearfield.com.

58. Schmidt, C. H., D. T. Schobert, and T. F. Eibert, "Electric dipole based synthetic data generation for probe-corrected near-field antenna measurements," European Conference on Antennas and Propagation, 3269-3273, 2011.