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Abstract—Electromagnetic field transformations are important for electromagnetic simulations and
for measurements. Especially for field measurements, the influence of the measurement probe must be
considered, and this can be achieved by working with weighted field transformations. This paper is a
review paper on weighted field transformations, where new information on algorithmic properties and
new results are also included. Starting from the spatial domain weighted radiation integral involving
free space Green’s functions, properties such as uniqueness and the meaning of the weighting function
are discussed. Several spectral domain formulations of the weighted field transformation integrals
are reviewed. The focus of the paper is on hierarchical multilevel representations of irregular field
transformations with propagating plane waves on the Ewald sphere. The resulting Fast Irregular
Antenna Field Transformation Algorithm (FIAFTA) is a versatile and efficient transformation technique
for arbitrary antenna and scattering fields. The fields can be sampled at arbitrary irregular locations
and with arbitrary measurement probes without compromising the accuracy and the efficiency of
the algorithm. FIAFTA supports different equivalent sources representations of the radiation or
scattering object: 1) equivalent surface current densities discretized on triangular meshes, 2) plane
wave representations, 3) spherical harmonics representations. The current densities provide for excellent
spatial localization and deliver most diagnostics information about the test object. A priori information
about the test object can easily be incorporated, too. Using plane wave and spherical harmonics
representations, the spatial localization is not as good as with spatial current densities, but still much
better than in the case of conventional modal expansions. Both far-field based expansions lead to
faster transformations than the equivalent currents and in particular the orthogonal spherical harmonics
expansion is a very attractive and robust choice. All three expansions are well-suited for efficient echo
suppression by spatial filtering. Various new field transformation and new computational performance
results are shown in order to illustrate some capabilities of the algorithm.

1. INTRODUCTION

Maxwell’s equations have been presented at about 150 years ago [1]. Since that time, the views on
electromagnetic fields and the governing equations have been changing and many techniques for the
solution of the field equations have been investigated. Nowadays, we concentrate mostly on differential
equation based field solutions and on integral representations of the fields due to sources or equivalent
sources [2–4]. Integral representations calculate the fields by integrals over the sources together with
an analytically known kernel, the Green’s function, which is, however, only known for free space or
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other canonical solution domains. In this paper, we consider integral representations involving Green’s
functions of free space, which are called field transformations, since the sources are mostly equivalent
sources, which are linked to the fields, typically on a Huygens surface. The integral representations are
extended by weighting or reaction integrals in order to have access to true field observations by realistic
measurement probes, where the influence of the probes is considered by appropriate weighting functions.
Moreover, the weighting integral formulation gives access to reaction and reciprocity considerations [2, 5–
7] as frequently used in numerical techniques such as the Method of Moments (MoM) [8]. Even though
the Green’s functions are known analytically, the field transformation and weighting integrals must
usually be evaluated numerically. Since the transformations are four to six fold integrals, their numerical
solution becomes easily computationally intensive and efficient methods are required to evaluate the field
transformations. Another issue with the numerical evaluation of these integrals are the singularities of
the involved Green’s functions for closely located source and observation points. The accurate evaluation
of these singularities is essential for integral equation solutions of radiation and scattering problems,
where the radiation integrals must be evaluated in the locations of the equivalent sources in order
to enforce the boundary conditions on the radiation or scattering objects [4, 8, 9]. A wide variety of
singularity treatments is nowadays available, e.g., see [10, 11], where such techniques are, however,
not in the focus of this paper. The focus are field transformations, where weighted field observations
are known from measurements or simulations and where equivalent sources reproducing these field
observations shall be computed. Since observation and source locations are typically well separated,
particular singularity treatment is here not necessary, unless the field transformations are combined with
additional constraints such as a null-field condition in order to obtain Love equivalent surface current
densities [12–15]. Once the equivalent sources have been determined, they shall be used to compute
further field observations of interest, e.g., the far-field of an antenna or a scatterer. Especially antenna
field measurements have become more and more important over the past years, since the accurate
knowledge of the radiation behavior of antennas is essential to further improve the performance and
capabilities of wireless communication and sensor systems. Full knowledge about the radiation or the
scattering behavior of an object is obtained by field measurements on a closed surface around the object
and by measuring the amplitudes and the phases of the fields. Closed measurement surfaces can be
replaced by open ones, if it is clear that the field amplitudes are very low in some region of space or
if interest is only in certain radiation directions. Also, phaseless measurements are possible, where the
robustness of the transformations is, however, reduced and an increased number of measurement samples
should be collected [16–19]. Once appropriate measurements have been taken, field transformations can
be utilized to compute the radiation or scattering fields of a Device Under Test (DUT) in any location
outside the sources of the DUT and it is even possible to perform DUT diagnostics by evaluating the
fields very close to the DUT.

Classical antenna field transformation methods work with modal expansions of the fields, where
the advantageous orthogonality of the field modes is utilized for measurements performed on canonical
surfaces such as planes, cylinder shells, or spheres. It is also very common to accelerate the computation
of the modal expansion coefficients by utilizing the Fast Fourier Transformation (FFT). This leads,
however, to the requirement that the measurement samples must be placed regularly, see, e.g., [20] for
an overview of modal field transformation techniques. Due to this, the flexibility and the diagnostics
capabilities of the conventional antenna field transformation techniques are rather limited and quite
often considerably more measurement samples have to be collected than actually required. Another
shortcoming of the modal field transformations is that they cannot consider a priori information about
the spatial sources distribution of the DUT, except for limiting the number of modes.

Inverse equivalent current or sources reconstruction methods [12, 21–23] work with spatially
discretized equivalent sources representations of the DUT. However, the basic equivalent sources
methods with spatial integral representation are computationally very demanding, as mentioned before,
and their speed-up by fast integral operator evaluation methods is more or less mandatory to transform
the measurements of electrically large DUTs. In [24], regularly sampled planar measurements have been
transformed with FFT acceleration. The most flexible and useful fast integral operator computation
method for this purpose is the Multilevel Fast Multipole Method (MLFMM) [9, 25], which has been
adapted in [22, 23] for the solution of inverse equivalent current problems. A single-level FMM has
been used in [26]. In contrast to the utilization of MLFMM for the solution of integral equations
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related to radiation and scattering problems, the challenges in its use for field transformations and
inverse equivalent current problems are the often relatively large separation distance between sources
and observation locations, the relatively large spatial separation between different observation locations,
and the appropriate treatment of realistic measurement probes.

With the MLFMM formulation for inverse equivalent current problems, it became obvious that the
representation with propagating plane waves on the Ewald sphere, opens up completely new possibilities
for performing near-field far-field (NFFF) transformations. The key is that the introduced discretized
plane wave spectra can directly be utilized as equivalent sources representing the DUT [27, 28].
This resulted in a very efficient algorithm, which we call FIAFTA (Fast Irregular Antenna Field
Transformation Algorithm). FIAFTA is able to include the influence of arbitrary measurement probes
just by their 3D FF patterns and it offers several possibilities to represent the equivalent sources of the
DUT. For instance, in antenna diagnostics, equivalent surface currents on a triangular mesh are useful.
The triangular mesh can directly model the enveloping surface of the antenna and the surface current
densities can be linked to the radiation fields near the antenna. The plane wave expansion coefficients
of a source group according to the MLFMM hierarchy can also be used as unknowns for the inverse
problem instead of the expansion coefficients of the surface currents on a triangular mesh. For further
reduction of memory consumption and most robust behavior, the plane wave spectrum of a source box
can be expanded in orthogonal spherical harmonics whose coefficients are used as unknowns. For these
equivalent sources representations, the hierarchical octree structure of the MLFMM helps to localize
the sources. Only boxes need to be defined as source boxes, which contain parts of a Huygens surface
representing the DUT. A priori knowledge about the device geometry can easily be incorporated into
the model for the inverse problem solution for all types of sources.

The ability to position sources arbitrarily within the octree makes it possible to place sources at
locations where parasitic echo centers due to scattering objects are assumed during the NF measurement.
By spatial filtering of these sources, DUT fields such as the far-field can be computed only from the
subset of equivalent sources belonging to the DUT. The influence of the disturbing sources on the
measurements is thereby eliminated.

The outline of the paper is as follows. In Section 2, electromagnetic field transformations in
form of weighted spatial radiation integrals are introduced and discussed together with uniqueness
and complexity considerations. Spectral representations of the field transformation operator are then
reviewed in Section 3, where first planar plane wave expansions are discussed, which have a series
of unique properties, but whose applicability is restricted to field observations in a plane. Spherical
wave expansions are shortly reviewed in order to emphasize its beauty and importance for practical
NF antenna measurements. The central part of this section are, however, propagating plane wave
expansions on the Ewald sphere. In Section 4, multilevel hierarchical field decompositions are reviewed
and discussed, which are the basis of FMM and MLFMM as well as of FIAFTA. These techniques
combine the ideas of the before discussed plane wave and spherical harmonics expansions in order to
achieve high flexibility and efficieny at the same time. Section 5 concentrates on FIAFTA. Starting
from the inverse problem solution concept, the various available sources representations and modelling
capabilities are discussed. Finally, Section 6 shows various results obtained by FIAFTA in order to
demonstrate its capabilities.

As already mentioned, the paper is mostly a review paper, but the presented transformation
and computational performance results are new. Also, many new insights into the algorithms
are included. Further capabilities of FIAFTA including the efficient treatment of non-redundant
measurements [29, 30], echo suppression techniques by inward and outward looking measurement
probes [31], volumetric imaging by hierarchical disaggregation of broadband field observations [32],
efficient transformation of phaseless field measurements with first results [18, 19], and the utilization
of FIAFTA within non-linear inverse material problem solutions [14, 15, 33] are found in the given
references. Extensive error investigations are presented in [34]. Recently, the FIAFTA concept was
extended for the NFFF transformation of monostatic radar cross section measurements [35]. A portable
antenna measurement system, which can fully benefit from the great transformation flexibility of
FIAFTA, has been presented in [36].
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Figure 1. Field transformation configuration: sources J and M within Vs bound by the Huygens
surface S1 generate fields which are observed by probe antennas at measurement locations rm. The
radiated fields outside of S1 can also be generated by equivalent surface current densities JA and MA

on the surface S1. The fields in V1 and V2 can be determined in a unique way from two independent
field observations on the surface S2.

2. FORMULATION OF WEIGHTED FIELD TRANSFORMATIONS

The considered linear field transformations are integrals of the form

U (rm) =
∫∫∫
Vw

w (r− rm) ·
∫∫∫

Vs

[
ḠE

J

(
r, r′

) · J (
r′

)
+ ḠE

M

(
r, r′

) ·M (
r′

)]
dv′dv , (1)

for time harmonic fields and sources with a suppressed time factor ejωt dependent on the angular
frequency ω. The transformation configuration is illustrated in Fig. 1 and as usual, r′ denotes source
locations, r observation locations, and w is a vector weighting function, which produces a field
observation in form of the voltage U † at the location rm. J and M are the electric and magnetic
source current densities and ḠE

J and ḠE
M are the corresponding dyadic Green’s functions, respectively,

which are known analytically, as, e.g., for free space in the form of

ḠE
J (r, r′) = −j

ωμ

4π

(
Ī +

1
k2

∇∇
)

e−jk|r−r′|

|r − r′| , ḠE
M (r, r′) = − 1

4π
∇× Ī

e−jk|r−r′|

|r − r′| . (2)

k is here the wavenumber of free space, μ the permeability of free space, and Ī the unit dyad.
In many cases, it is useful to work with surface current densities JA and MA as well as with surface

weighting functions wA defined in locations rA on surfaces, which are linked to the corresponding volume
densities via

J (r) = JA (r) δ (r− rA) , M (r) = MA (r) δ (r − rA) , w (r) = wA (r) δ (r − rA) . (3)

Based on Huygens principle, the surface current densities can be related to the tangential fields by

JA (r) = n̂ × H (r) , MA (r) = −n̂ × E (r) , (4)

where n̂ is the unit normal vector on an appropriate Huygens surface. If the equivalent surface currents
or the tangential fields are known on closed Huygens surfaces or if open surfaces can be closed by
surface extensions with vanishing tangential fields, Huygens and equivalence principles can be used
for the derivation of uniqueness statements of the transformed fields or observables according to (1).
Important for this to be valid is that the field transformations are only performed in source free regions.
For the case in Fig. 1, it is, e.g., required that the relevant primary sources J and M are confined to
† U can be an open-circuit voltage or the voltage at a certain load impedance.
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the region Vs
‡. With knowledge of the equivalent surface currents on one of the surfaces S1 or S2 in

Fig. 1, the electromagnetic fields are uniquely defined anywhere in space (in V1 and in V2) except for the
volume Vs with the original sources. In case of radiation problems, the primary sources are contained
in Vs, whereas for scattering problems, it is assumed that the sources of the scattered fields are confined
to Vs and that these sources are induced by an incident field. (1) relates then to the scattered fields.

In NF measurements, the complex fields (amplitude and phase) are usually measured on the surface
S2 (utilizing appropriate measurement probes) and equivalent sources within Vs or on S1 are determined
from these measurements in order to reproduce the measurements. Then, the found equivalent sources
are used to compute the far-fields or near-fields anywhere in V1 and V2. The determination of the
equivalent sources within Vs or on S1 is a linear inverse problem solution with a forward operator in the
form of (1). The inverse problem solution is in particular necessary in order to remove the influence of
the measurement probe antennas represented by the weighting function w in (1).

For the transformation of simulated near-fields, an inverse problem solution is usually not required,
since the fields are directly accessible without a measurement probe. Consequently, any observation
field in V1 or V2 can be computed directly from the also known equivalent sources JA and MA on S1

by evaluating (1) in the form of a forward operator.
According to the uniqueness theorem, it is known that the knowledge of one type of tangential

surface fields (electric or magnetic) is sufficient to uniquely define the electromagnetic fields in the
whole volume enclosed by the surface as long as no resonances occur. In field transformations as, e.g.,
for measurements of radiation or scattering fields, it is commonly assumed that resonances cannot occur
and, therefore, only one type of measurement (with a certain measurement probe) is usually performed§.
Also, it is noted that one type of equivalent surface currents, e.g., on S1 in Fig. 1, is sufficient to reproduce
any field in V1 or V2, even though the surface current densities and the corresponding fields do no longer
fulfill (4) in this case. If both types of surface current densities are present during the inverse solution
process, they are not uniquely defined anymore and they can contain non-radiating currents. These non-
radiating currents are not harmful to the field transformation in most cases, but they can be suppressed
by further constraint equations forcing the fields inside Vs to be zero, if required. In this case, JA and
MA are unique and fulfill (4) [12, 14, 15].

In real field measurements, the weighting function w represents the measurement probe and one
may ask what the physical meaning of w is. The question can be resolved by looking at different
equivalent reciprocity interaction integral representations for the probe antenna. Fig. 2(a) illustrates a
possible measurement probe, where U is the receive voltage for a given incident field and I is the feed
current of the probe antenna in transmit mode, which is impressed in the terminal region. Fig. 2(b)
shows an equivalent representation of the same antenna, where the antenna structure has been replaced
by an equivalent electric current distribution impressed within the probe volume Vw. By invoking the
equivalence principle [2], it can be shown that both configurations radiate the same fields in transmit
mode‖. Together with the reciprocity theorem [2], it can then be shown that

U(rm)I(rm) =
∫∫∫
Vw

E(r) · I(rm)w(r − rm)dv −→ U(rm) =
∫∫∫
Vw

E(r) · w (r − rm) dv. (5)

Consequently, the probe weighting function w can be any equivalent current density impressed in free
space representing the probe radiation in transmit mode for a feed current of 1A at the terminals of
the antenna.

In any numerical evaluation of (1) or of the corresponding inverse problem, the sources are
discretized by a finite set of basis functions and a finite number of observations are considered. Due to
the global nature of the forward operator (1), its direct evaluation will cause a numerical complexity of
O(MN), if M is the number of measurement samples and N the number of basis functions representing
the sources. Since this quadratic complexity (assuming M = N) will quickly lead to unacceptable
computation times for large problems, it is mandatory that efficient numerical methods are constructed
for the representation of (1) or its inverse.
‡ Please note that these primary sources can be due to the DUT, but also due to undesired echo contributions.
§ As discussed in [31], measurements with different types of probes, e.g., inward and outward looking, can be used to distinguish
between sources within and outside of the measurement surface (S2 in Fig. 1)
‖ For this, it is assumed that mutual interactions involving the probe antenna are negligible.
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Figure 2. (a) Probe antenna with transmit feed current and receive voltage. (b) Equivalent probe
model with removed antenna structure and impressed transmit electric current density in free space.

3. SPECTRAL REPRESENTATIONS OF THE FIELD TRANSFORMATIONS

The key for an efficient evaluation of the forward operator (1) is to eliminate its inherent redundancy.
This redundancy is due to the fact that the waves generated by sources in a certain volume can be
represented by a limited number of degrees of freedom dependent on the required accuracy. To achieve a
redundancy reduction, the waves radiated by the sources are expanded into a set of linearly independent
wave objects, which are often solutions of Maxwell’s equations and which are orthogonal with respect to
each other. Similarly, the weighting functions w in (1) are only sensitive to a limited number of degrees
of freedom of the incident wave field. This fact can be used for a further redundancy reduction by
expanding the receive fields at the location of a weighting function into appropriate wave field objects.
Since the wave field objects for the expansion of radiated fields are usually outgoing waves and the
optimal expansion fields around the weighting functions or receivers are incident waves, translation
operators may additionally be needed to convert the outgoing wave expansions into incident wave
expansions. The efficiency of these translations is also very important for the overall efficiency, which
can be achieved for the evaluation of (1) or for the corresponding inverse problem solution.

3.1. Planar Plane Wave Expansion

One of the simplest wave expansions is found by expanding the fields or equivalently the pertinent
Green’s functions in (2) in a plane of infinite extent into plane waves. Formally, the Sommerfeld
identity [2]

1
4π

e−jk|r−r′|

|r− r′| =

+∞∫∫
−∞

e−jkz|z−z′|

kz
e−jkx(x−x′)e−jky(y−y′)dkxdky (6)

with kz =
√

k2 − k2
x − k2

y can be used to achieve this, where the field expansion is here performed in a
plane z = const.. Assuming only electric current sources and that all sources are below the expansion
plane with all observation locations above the expansion plane, (1) together with the Sommerfeld
identity (6) can be written in form of

U (rm) = −jωμ

+∞∫∫
−∞

[
w̌(kx, ky)e−jkz(zm−z′s) · J̌(kx, ky)

]
ejkxxmejkyymdkxdky (7)

with

J̌(kx, ky) =
∫∫∫

Vs

[
1
kz

(
Ī +

1
k2

∇′∇′
)

ejkxx′
ejkyy′

ejkz(z′−z′s)
]
· J (

r′
)

dv′ (8)

and
w̌(kx, ky) =

∫∫∫
Vw

w (r− rm) e−jkx(x−xm)e−jky(y−ym)e−jkz(z−zm) dv. (9)
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It is obvious that J̌ and w̌ are the Fourier or inverse Fourier transforms of the source currents and
the weighting or receiving function, respectively, which are related to the corresponding FF patterns as
known from antenna theory. z′s is here chosen as a reference z-location for the sources Fourier transform.
The weighting function Fourier transform is defined with respect to a local coordinate system with its
origin located in the measurement location rm and is, therefore, independent from rm. Writing the
received signal as a Fourier integral

U (rm) =

+∞∫∫
−∞

Ǔ(kx, ky)ejkxxmejkyymdkxdky (10)

and by utilizing the orthogonality of the exponentials with respect to kx and ky, we obtain

Ǔ(kx, ky) = w̌(kx, ky)e−jkz(zm−z′s) · J̌(kx, ky), (11)
where the plane wave expansion of the received signal is usually obtained by regularly sampling the
receive field with a given measurement probe with fixed orientation within a measurement plane. In
this case, the plane wave expansion in (10) can be efficiently obtained by FFT. In planar antenna
measurements, the receive signals U(rm) are measured with a measurement probe, Ǔ is computed by
FFT and the algebraic Equation (11) is inverted to obtain J̌. Usually, two linearly independent (possibly
orthogonal) measurement probes are used in order to find the relevant vector components of J̌. Once J̌
has been determined, the far-field is found from [20]

EFF (ϑ,ϕ) = kωμ cos(ϑ)
e−jkr

2πr
J̌ (k sin(ϑ) cos(ϕ), k sin(ϑ) sin(ϕ)) . (12)

An important advantage of the planar plane wave expansion is that radiated wave objects are identical
to incident wave objects, i.e., both are just plane waves. As seen in (7), only a phase shift is needed to
translate the radiated waves into incident waves at the observation locations. Since every radiated wave
is directly translated into just one incident wave, this translation operator is called diagonal. Writing
it in matrix form, it is different from zero only on the main diagonal.

An interesting property of the planar plane wave expansion is the strict separation of propagating
and evanescent waves with respect to the expansion plane. Since the evanescent waves do not transport
energy from the sources to the observation probes in antenna measurements¶, they can be completely
omitted in antenna field transformations. This separation of evanescent and propagating waves can also
be considered as a reason for the fact that supergain effects of antennas are usually only observed in
endfire and frontfire directions, but not at broadside.

Practical NF measurements and numerical evaluations of the field transformations require a
discretization of the plane wave spectra, where it is commonly accepted that sample spacings of half
a wavelength λ are required in planar NF measurements [20]. This is, however, only the case, if FFT
based field transformations are utilized, which are not able to consider any a priori knowledge about the
DUT. If the knowledge about the shape of the DUT is considered and more flexible field transformation
approaches are employed, reduced sampling rates can be achieved for many configurations [29, 30, 37–39].

More information on planar NF measurements and the corresponding FFT based NFFF
transformations can, e.g., be found in [20, 40].

3.2. Spherical Wave Expansion

Spherical wave expansions are based on electromagnetic eigenmodes in spherical coordinate systems.
Similar to (6), the scalar Green’s function can be expanded in form of [2]

1
4π

e−jk|r−r′|

|r − r′| = −jk

∞∑
n=1

n∑
m=−n

jn(kr′)h(2)
n (kr)Y∗

nm(ϑ′, ϕ′)Ynm(ϑ,ϕ) (13)

where the radiating wave expansion with respect to r consists now of outgoing spherical waves containing
the spherical Hankel functions h(2)

n of 2nd kind and order n together with the spherical harmonics Ynm.
¶ This is true as long as mutual coupling between the sources and the probes is neglected, what is a common assumption in antenna
and scattering measurements.
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The source expansion consists of standing waves with respect to the radial direction involving the
spherical Bessel functions jn of order n together with the conjugate complex of Ynm (indicated by
the ∗), i.e., radiating and incident wave field objects are now different. This expansion can again be
plugged into (1) in order to obtain a spectral representation of the field transformation. If source current
densities are given and their fields shall be evaluated, it is necessary to first compute the integral over
r′ in order to obtain the multipole expansion coefficients of the radiating spherical waves. However,
in the inverse problem case, where field observations are given, it is usually possible to avoid the r′
integrations and the multipole coefficients of the outgoing waves are directly determined in the inverse
solution process. The FF pattern of the DUT can be directly obtained from these multipole coefficients
by evaluating the outgoing waves under FF conditions.

In order to facilitate the evaluation of the transformation equation, the weighting function w
representing the measurement probe, is usually first represented with a spherical expansion of radiating
or receiving waves in a local probe coordinate system and this expansion is then translated into weighting
coefficients for the radiating modes in the DUT coordinate system [20, 41]. In general, such multipole
translations are full operators. However, under the assumption of probes with first order azimuthal
modes only, these translations can be performed very efficiently. Together with regular sampling in ϑ
and ϕ on spherical measurement surfaces, the resulting spectral operator can be evaluated very efficiently
in forward as well as in inverse direction by utilizing FFTs [20, 41]. The corresponding extremely efficient
algorithms are nowadays the standard in spherical NFFF transformations. For higher order azimuthal
probes, also a variety of field transformation algorithms have been investigated, which are, however,
less efficient [42, 43].

An interesting property of the spherical modes is that they do not allow the separation of evanescent
and purely energy propagating modes. Actually every single outgoing mode becomes strongly evanescent
if the radius r is just chosen small enough. Usually, the sampling requirements of the spherical modes
are derived based on this observation. Dependent on the desired accuracy, modes which are strongly
evanescent in the source region are assumed to decay far enough until they become predominantly
propagating [9].

An important advancement to mention is the combination of spherical mode expansions with
complex source or Gaussian beams, which allow directive wave field representations [44].

3.3. Propagating Plane Wave Expansion on the Ewald Sphere

An alternative plane wave based expansion of the scalar Green’s function is given by [9]

e−jk|r−r′|

|r− r′| =
∫
©
∫

e−jk·(r−rm)ejk·(r′−r′s) T∞
(
k̂, rm − r′s

)
dk̂2 (14)

valid for arbitrary vectors with |rm − r′s| > |r − rm − r′ + r′s| with the diagonal translation operator

T∞(k̂,X) =
jk

4π

∞∑
l=0

(−j)l(2l + 1) h(2)
l (k|X|) Pl

(
k̂ · X̂

)
(15)

as known from FMM. Pl is the Legendre polynomial of order l. rm can here be chosen as the
measurement location or as the reference point of a cluster of measurement probes and r′s can be
chosen as a reference point of the sources or a cluster of sources. As obvious from the given condition
for the location vectors, the volume containing the sources is not allowed to overlap here with the volume
containing the observation locations. Plugging this expansion in (1), we obtain

U (rm) =
−j

4π

∫
©
∫ [

w̃(−k) · T∞(k̂, rm − r′s)
(
J̃(k) + M̃(k)

)]
dk̂2 (16)

with

J̃(k) = −j
ωμ

4π

∫∫∫
Vs

(
Ī − k̂k̂

)
· J (

r′
)
ejk·(r′−r′s)dv′, (17)
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M̃(k) = j
k

4π

∫∫∫
Vs

(
k̂ × M

(
r′

))
ejk·(r′−r′s)dv′, (18)

and
w̃(k) =

∫∫∫
Vw

w (r− rm) ejk·(r−rm) dv. (19)

As already noted, we have here again a diagonal translation operator for plane waves, where the
dependence on the measurement location is, however, relatively complicated. Therefore, an orthogonal
expansion with respect to measurement locations rm varying on a certain surface shape is not possible
with this representation. The strength of this formulation is its great flexibility and independence
from particular measurement surface shapes. The field transformation equation can be evaluated in
any direction as long as the source and observation volumes do not overlap and it captures evanescent
field effects with a purely propagating plane wave representation. In antenna field transformations,
it has been observed that this transformation can directly work with a discretized representation of
J̃, i.e., of the DUT radiation pattern, without resembling to the spatial source currents [28]. The
transformation can, however, also be used to speed up the inverse computation of spatial equivalent
currents representing a DUT or a scattering object [22, 23] or for just evaluating the fields radiated from
known sources. Most advantageous is this propagating plane wave based field transformation within a
hierarchical scheme for the representation of the sources and the observations as discussed in the next
Section 4.

Quite interesting to investigate is the behavior of (16) for large translation distances |rm − r′s|.
In accordance with what can be expected from the common FF approximations, it turns out that the
FMM translation operator can be replaced by [45]

TFF (rtr) =
e−jk|rtr|

|rtr| δ
(
k̂ − r̂tr

)
with rtr = rm − r′s (20)

for large enough translation distances. This means that only one locally plane wave representing a
spherical wave front is incident in Vw. In order to bridge the gap between the classical translation
operator (15) and its FF representation (20), windowed translation operators have been proposed as
an approximation of (15) for relatively large propagation distances resulting in ray-propagation fast
multipole algorithms [46]. More recently, the concept of Gaussian beams has been introduced by
T. Hansen in [47], which provides a rigorous directive representation of the FMM translation operator
according to

TGB
∞

(
k̂,X

)
=

jk

4π

∞∑
l=0

(−j)l(2l + 1) h(2)
l (k (|X| − jΔ))Pl

(
k̂ · X̂

)
(21)

where a complex translation distance with an imaginary part −Δ (Δ > 0) is used. An observation,
which can be concluded from the existence of different exact translation operators, is that many incident
wave spectra composed of propagating plane waves on the Ewald sphere can produce the correct incident
field in the observation volume.

4. MULTILEVEL HIERARCHICAL SOURCES AND FIELD REPRESENTATIONS

A limitation of the discussed spectral representations of the field transformation integral (1) is given
by the fact that the source volumes and the observation volumes must not overlap in order to ensure
convergence of the spectral series or integral representations. In the planar plane wave representation,
the sources and the observation locations must be on opposite sides of an infinite plane, what is usually
only given for planar NF measurements. In the spherical mode expansion and in the Ewald sphere
based plane wave expansion, the minimum spheres around the sources and around the considered
weighting functions at the observation locations must not overlap. These restrictions can be very severe
for practical configurations. However, the restrictions can be overcome by hierarchical evaluations
of the field transformations. The idea is to first organize the sources and the observation weighting
functions into localized clusters. Then, the field transformations are performed for well separated
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clusters and observers until the interactions between all source clusters and all observation clusters have
been captured. If the cluster sizes are fixed at a relatively small size, the computational complexity will
remain at O(MN), as discussed in Section 2. However, with a multilevel hierarchical clustering scheme
of the sources and the observers a numerical complexity of O(M log(M)+N log(N)) can be achieved for
the evaluation of all the interactions. The hierarchical clustering is usually achieved by an octree based
spatial partitioning [9]. First, all sources and/or observers are enclosed in a large cube on the coarsest
level. Next, this cube is subdivided into eight equal sized sub-cubes on the first finer level. Then, every
cube on this finer level is again subdivided and so on, until the cubes are so small that all relevant field
interactions can be accurately computed. If sources and observers are so close that their interactions
cannot be computed by the utilized spectral representation, the spatial field interaction integral (1) can
be utilized for the computation of these interactions. If it is desired to work with a particular cube size
on the finest level, it is advantageous to build the octree from the finest level to the coarser levels. In
most cases, the sources and the observers are organized within the same octree, but sometimes separate
octrees for the sources and the observers can be of benefit [32, 35].

The spectral field transformations basically consist of three steps: 1.) The computation of the
spectral sources and observer representations on the source and the testing levels, respectively. 2.) The
translation of the spectral representations from the source boxes to the observation boxes. This includes
aggregation of the sources spectral representations from finer to coarser levels, so that the translations
can be performed on the most appropriate levels. At the receiving side, the received spectra are
disaggregated down to the testing or observation level. 3.) The evaluation of the spectral series or
integrals on the testing level.

For the efficiency of a hierarchical multilevel scheme, it is essential that the aggregations and
disaggregations of the spectral representations among different levels can be evaluated with low
computational complexity. Since aggregations and disaggregations are usually full operators for the
spherical multipole based spectral representations, these expansions are not very convenient for high-
frequency applications [9]. In the spectral plane wave based representations, the aggregations and
disaggregations require interpolations and phase shifts, which can be performed very efficiently with a
complexity of O(N log(N)) for local interpolation or O(N log2(N)) for global interpolation (similarly for
M) [9]. Hierarchical multilevel schemes utilizing Ewald sphere based plane wave spectral representations
have become famous in the so-called Multilevel Fast Multipole Method (MLFMM) or Multilevel Fast
Multipole Algorithm (MLFMA) for the solution of integral equations [9]. Such integral equation

DUT sources in source level boxes

Probes in probe level boxes

Diagonal translations 

Diagonal translations

Aggregation
Interpolation

Aggregation
Interpolation

Disaggregation
Anterpolation

Aggregation

Disaggregation

Figure 3. Hierarchical field transformation: Spectral sources representations are first computed
with respect to the box centers of the source level. Next, the spectral sources are interpolated and
aggregated to coarser levels. Diagonal field translations are performed on the most appropriate level.
The plane waves in the receiver boxes are disaggregated and anterpolated until the interactions with
the measurement probes are computed on the testing level, which can be different from the source level.
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problems are characterized by the fact that sources and observation weighting functions are more or
less identical and populate the same volume. Therefore, relatively many near-interactions have to
be computed. In [48], also field interactions from known sources to observation locations have been
computed based on MLFMM. In [22, 23], inverse equivalent current problems have been solved by
utilizing hierarchical multilevel representations and in [27, 28], the NFFF transformations have been
directly performed with the spectral plane wave representation of the DUT radiation pattern. In Fig. 3,
the hierarchical multilevel scheme is illustrated for the computation of the received probe fields due to
equivalent current sources representing a DUT.

A planar plane wave expansion based multilevel algorithm has been presented in [49] for the solution
of a planar integral equation formulation.

5. THE FAST IRREGULAR ANTENNA FIELD TRANSFORMATION ALGORITHM

FIAFTA is basically an algorithm for the computation of equivalent surface current densities JA and
MA on a surface S1 as illustrated in Fig. 1 due to field observations in arbitrary locations obtained with
arbitrary measurement probes with arbitrary orientation. Usually, the measurement locations lie on a
closed or open (e.g., for planar) surface S2 around a DUT, which is assumed to radiate. Alternatively, a
scattering problem can be considered, where an incident wave exists, e.g., a plane wave or an illuminating
antenna in the near-field. In order to formulate the linear inverse problem, the M field observations are
collected in the solution column vector b and the sources are discretized with a set of N known basis
functions with N unknown coefficients collected in the column vector x. Thus, the linear transformation
operator Equation (1) can be written in the form of a linear equation system

C̄ x = b, (22)

where the M by N matrix C̄ contains the field interactions between the source basis functions and the
weighting functions representing the measurement probes. Since this equation system is usually under
or overdetermined and may contain noise and interference due to imperfect measurements, we solve the
corresponding normal equation system

C̄ad C̄ x = C̄adb, (23)

which gives a least mean square solution for x [50]. C̄ad is here the adjoint (transpose conjugate
complex) of C̄. The normal equation system is solved by the iterative Generalized Minimal Residual
(GMRES) equation solver [51], which has built-in regularization properties and can be stopped before
noise or interference start to strongly influence the solution quality. Important is also that an iterative
solver does not need the explicit inversion of the forward operator, but only the repeated evaluation of
the matrix-vector products involving C̄ and C̄ad for the solution of the inverse problem.

5.1. Spatial Domain Discretization of Equivalent Surface Current Densities

In FIAFTA, we work with surface current densities according to (3) and (4), which are discretized on
triangular meshes according to

JA (r) =
∑

p

Jpβp (r) and MA (r) =
∑

q

Mqβq (r) , (24)

where βp and βq are divergence conforming vector basis functions. Mostly, we work with the well known
Rao-Wilton-Glisson (RWG) basis functions, but higher-order basis functions can also be used [23]. The
expansion coefficients Jp and Mq are the unknowns of the inverse problem.

In an initial step of the inverse problem solution, the vector basis functions are grouped in the boxes
on an appropriate level of an octree as discussed in Section 4 and the plane wave spectra on the Ewald
sphere according to (17) and (18) are computed with respect to the box centers. The probe spectral
representation according to (19) can also be precomputed, if the spatial probe weighting function w is
known as, e.g., in the case of a Hertzian dipole probe or an open-ended waveguide probe. For realistic
measurement probes, however, the FF radiation pattern is usually known from measurements or external
simulations and it can directly be used as w̃.
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In the iterative solution of the inverse problem in (23), the matrix operators C̄ and C̄ad are usually
computed on the fly according to (16) and by utilizing the hierarchical multilevel principles in Section 4
together with the pre-computed spectral representations of βp and βq as well as of all w̃ for the various
testing locations rm. For very small translation distances from the sources to the observation weighting
functions, the field interactions can also be computed by direct spatial integration according to (1).

Once the inverse problem solution has been obtained, the Jp and Mq are known and can be used
to compute the true J̃ and M̃ in (17) and (18) with respect to the corresponding octree box centers
and the total far-field of the DUT is efficiently obtained by aggregating and interpolating all the source
box far-fields to coarser levels of the octree until the level with only one box representing the total
pattern has been reached. Unknown radiation or scattering fields in NF locations can be obtained by
evaluating (1) or (16) with Dirac delta weighting functions at the desired locations.

Valuable diagnostic information about the DUT can be obtained by visualization of the surface
current densities on the underlying triangular meshes and it is also possible to perform spatial
filtering of the surface current densities before the near-fields or far-fields are finally evaluated. In
particular, if disturbing scattering objects influence the field measurements, they can also be modelled
by equivalent current densities during the inverse problem solution and later discarded within the FF or
NF computations. Such spatial filtering of equivalent sources can achieve a considerable suppression of
echo contributions, in particular if the location of the echo sources is known. A typical NF transformation
scenario with equivalent surface current densities placed in the source boxes of an octree structure is
illustrated in Fig. 4(a).

As discussed in [23] and in the initial problem statement in this paper, working with electric and
magnetic surface current densities on a Huygens surface as, e.g., S1 in Fig. 1 leads to a redundant
source representation. By scaling the electric and magnetic surface current densities appropriately,
the resulting solution for the equivalent sources can be influenced while the far-fields and near-fields
computed from these sources remain the same as long as the observation point is located, e.g., outside
of Vs in Fig. 1. Alternatively, the fields in VS can be forced to zero by additional constraint equations
in order to obtain the so-called Love current densities according to (4) [12, 14, 15].

5.2. Direct Discretization of the Plane Wave Spectra of the Source Boxes

Instead of performing the transition from the spatial into the spectral domain according to (17) and (18),
the sum of the spectra J̃ and M̃ can be sampled directly dependent on k̂(ϑ,ϕ). The number of the
corresponding plane wave samples depends on the size of the chosen source boxes, determining the
maximum spectral content of the generated fields. In order to accurately evaluate the spectral integral
in (16), the translation operator must also be sampled appropriately. For this purpose, a Gauss-Legendre
quadrature rule with Npw = 2(L+1)2 plane wave samples on the Ewald sphere is typically utilized [25].
Choosing the sampling rate according to the quadrature rule leads to an oversampling of the plane wave
spectra of the source boxes. This is of course disadvantageous for the memory consumption and the
well-posedness of the inverse problem, but beneficial for the accuracy of the interpolation process, if a
local Lagrange interpolation method is employed in the aggregation step of the algorithm [9]. Such an
oversampling makes it necessary to carefully low-pass filter the plane wave spectra in order to limit their
bandwidth according to the size of the source boxes. As an alternative, global interpolation by FFT
can also be used within the aggregation and disaggregation procedures. Since global interpolation is
exact for band limited signals, oversampling can be omitted in this case. However, the equidistant plane
wave samples on the sphere must be considered as 2π periodic in ϑ, too, and the numerical integration
involving the metric coefficient | sin(ϑ)| must be appropriately handled in the numerical quadrature over
the sphere based on equidistant sampling. Details about the corresponding algorithms for radiation and
scattering integral equation solutions can be found in [52–54].
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5.3. Spherical Harmonics Expansion of the Plane Wave Spectra of the Source Boxes

The plane wave spectra of the source boxes mentioned before can be expanded in spherical harmonics
according to+ [25]

J̃ (k(ϑ,ϕ)) + M̃ (k(ϑ,ϕ)) = T (k(ϑ,ϕ))
ML∑
m=0

m∑
n=−m

fmnYmn (k(ϑ,ϕ)) (25)

where fmn are expansion coefficients in Cartesian components and Ymn (k(ϑ,ϕ)) are scalar spherical
harmonics of degree m and order n [9, 25]. The Cartesian vector components are transformed into the
required spherical ϑ- and ϕ-components by the matrix operator T. The necessary maximum degree
M for the representation of the plane wave spectra of a source box again must be chosen according to
the size of the box. Usually, a number of ML = L/2 − 1 spherical harmonics is sufficient, where L is
the chosen truncation order in (16) and with the assumption of source and receive boxes of equal size.
As a result, Nsph = 3(L/2 − 1) spherical harmonics for each source box are needed. The advantage
of the expansion in spherical harmonics is that the number of unknowns of the inverse problem can
be kept minimal. Also, the spherical harmonics form an orthogonal basis which is very well suited for
a robust representation of the radiation characteristics of the source boxes. Furthermore, the direct
evaluation of the spherical harmonics allows for an exact low-pass filtered transition to the plane wave
representation on the source level of the octree so that the plane wave based aggregation, translation
and disaggregation procedures of FIAFTA can be utilized. As an alternative to the spherical harmonics
expansion of Cartesian vector components of the plane wave spectra, it is also possible to work with
TE and TM electromagnetic vector spherical harmonics expansions [9]. These need a larger number
of expansion coefficients for small source boxes, but less for large source boxes [25]. In contrast to
integral equation solutions as considered in [25], where the spherical harmonics expansion is used as an
intermediate step, the spherical harmonics are directly utilized as the primary basis functions within
FIAFTA. An NF transformation scenario with spherical harmonics spectral sources corresponding to
the scenario in Fig. 4(a) is shown in Fig. 4(b). There are still spatial localization capabilities, but
these are restricted by the chosen size of the source boxes. DUT and echo sources can still be treated
separately.

Echo sources DUT sources Probes

AJ

AM

AJAM

Source level Echo sources Probe level boxes

Echo sources DUT sources Probes

Source level boxes Probe level boxesEcho sources 

(a) (b)

Figure 4. NF transformation scenario with (a) equivalent surface current densities, (b) spherical
harmonics representation of the sources in a source box. In both cases, the sources are treated in boxes
on the source level and the measurement probes are considered on a coarser level of the octree. DUT
and echo sources can be separated in both cases due to spatial and spectral filtering.

+ Please note that there is only one field expansion necessary, which comprises the fields of electric and magnetic sources.
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5.4. Nonlinear Inverse Problems and Phaseless Field Transformations

In the preceding sections, focus was on the solution of linear inverse problems, i.e., the determination
of equivalent sources from field observations. If only the amplitudes of the field observations are known
and not the phases, the inverse problem becomes nonlinear and can, e.g., be written as [16, 17]

min
x∈CN

f(x), f(x) =
NM∑
n=1

∥∥Mn − C̄n x ◦ C̄∗
n x∗∥∥2

‖Mn‖2 , (26)

where f : C
N �→ R, C̄ is the forward field transformation operator, x the vector of unknowns,

Mn = bn ◦ b∗
n are the squared measurements, the subscript n indicates one set out of NM sets of

measurement samples� and ◦ is the Hadamard product. From this, it is clear that the linear FIAFTA
transformations can be utilized as an efficient transformation operator within an appropriate nonlinear
inverse problem solution, such as by the conjugate gradient algorithm. First results on this have been
presented in [18] and are currently under further investigation.

Another type of nonlinear inverse problems, which can benefit from the flexibility and efficiency
of the linear FIAFTA transformations, are nonlinear inverse medium problems, where the volumetric
permittivity distribution within an imaging volume shall be determined from scattered field observations.
Since the field observations are usually collected in some distance away from the actual imaging domain,
it is possible to transform the field observations into equivalent surface current density distributions on
a Huygens surface in close proximity to the actual imaging domain. This pre-processing step is a linear
inverse equivalent surface current solution as discussed before in this paper, which can be performed by
FIAFTA. For this kind of problem, it is, however, recommended to combine the inverse problem solution
with a null-field condition for the interior of the Huygens surface in order to obtain Love equivalent
surface current densities, which correspond directly to the tangential fields in the Huygens surface.
These tangential fields can then be used as boundary conditions for a more localized nonlinear inverse
problem solution. Initial investigations on this topic have been presented in [14, 15, 33].

6. NEAR-FIELD TRANSFORMATION RESULTS

The first scenario is a horn fed fan beam reflector antenna with a size of 60λ and with a TUM shaped slot
of width 1λ, as shown in Fig. 5. The NF measurement data was computed by our MoM solver [25, 55]
on a spherical measurement surface with a radius of 180λ assuming Hertzian dipoles as measurement
probes. Next, the FIAFTA code according to Section 5.1 was utilized to compute equivalent surface
current densities on the reflector geometry from the NF samples, where the information about the
TUM shaped slot was, however, not put into the current expansion, i.e., surface current density basis
functions were also assumed in the slot. The current distribution obtained from the inverse solution
as shown in Fig. 5 demonstrates clearly the diagnostics capabilities of the FIAFTA code and the FF
cut compared with the corresponding MoM results in Fig. 6(a) exhibits also excellent accuracy. In a
second FIAFTA simulation with spherical harmonics sources within source level boxes with side length
λ/2 (see Section 5.3), an even lower FF error� compared to the MoM results was achieved, as seen in
Fig. 6(b).

In the second example, true spherical NF measurements are considered, which have been obtained
in the anechoic chamber of Technische Universität München with an open-ended waveguide probe for
a measurement distance of about 2.75 m. The DUT is an R&S HF907 double-ridged waveguide horn
specified for frequencies from 800 MHz to 18 GHz [56]. A picture of the antenna together with equivalent
surface current densities on a Huygens surface around the antenna is shown in Fig. 7. The electric and
magnetic surface current densities have been computed with FIAFTA according to Section 5.1 for a
frequency of 18.0 GHz and they clearly illustrate the radiation behavior of the antenna. An even clearer
insight into the NF distribution of the antenna is gained by the surface current densities shown in Fig. 8,
which fulfill the Love condition in (4) and which have been obtained by postprocessing from the surface
� Measurement samples on different measurement surfaces, as often used for phaseless field transformations, are assigned to different
sets.
� The error level is computed by taking the linear difference of the magnitude of the fields and normalize it to the maximum of the
reference field.
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MoM Ref. FIAFTA
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Figure 5. Horn fed fan beam reflector antenna with a 1λ wide slot in the form of the letters TUM
standing for “Technische Universität München”. Shown are electric surface current densities computed
by a Method of Moments (MoM) solver [25, 55] and inverse equivalent surface current densities obtained
from NF samples with the FIAFTA code. The NF samples were taken with Hertzian dipole probes on
a spherical measurement surface with a radius of 180λ.
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Figure 6. FF cuts obtained by FIAFTA for the fan beam reflector in Fig. 5 in comparison to MoM
reference results: (a) FIAFTA with equivalent surface current densities on the reflector, (b) FIAFTA
with spherical harmonics in source boxes with side length of λ/2.

current densities in Fig. 7. The triangular surface mesh representing the antenna comprises 188 090
triangles resulting in a total of 564 270 electric and magnetic surface current unknowns. The number of
measurement points is 45 051, where two orthogonal polarizations were measured in every location. The
computation time for one iteration of the inverse problem solution was here about 145 sec on one core
of an Intel I7 processor with 3.7 GHz and a setup time of about 200 sec was required for the equivalent
current computation. Running the same problem with spherical harmonics sources representing the
antenna (see Section 5.3), defined in source boxes with a side length of λ/2, the setup time was reduced
to about 55 sec, whereas the iteration time was similar as before. Dependent on the desired accuracy
and the configuration of a problem, 5 to 80 iterations are usually sufficient to finalize the solution.
Solving the problem with an algorithm utilizing regular sampling and global FFT based interpolation
as well as separate octrees for the sources and the observation points resulted in an iteration time of
about 56 sec on one core of the Intel I7 processor and of about 18 sec on four cores of the same processor.
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Figure 7. Photograph of R & S HF907 antenna [56] together with equivalent surface current densities
obtained by FIAFTA from spherical NF measurements for a frequency of 18 GHz: (a) electric surface
current density, (b) magnetic surface current density. Cut views of the assumed Huygens surface are
shown.

For this solution spherical harmoncis expansion of the complete HF907 antenna was used. Co-polar
and cross-polar H-plane and E-plane FF pattern cuts obtained from the two inverse problem solutions
are depicted in Fig. 9 and in Fig. 10. The patterns are compared to the results obtained with the NSI
NFFF transformation software [57] and it is seen that good agreement is achieved. The error levels
are only shown for the FIAFTA spherical harmonics results. For the equivalent currents, the error
with respect to the NSI results is slightly larger, since the equivalent current model enforces a more
stringent spatial filtering than the spherical harmonics sources in FIAFTA and also in the NSI software.
Fig. 11 illustrates finally a volumetric equivalent electric sources image, which has been computed from
broadband measured data from f = 8.0 GHz to f = 19 GHz with a step size of 50 MHz. First, the near-
fields were transformed into far-fields with the NSI transformation software and then the volumetric
image was computed from the fully spherical plane wave spectra by hierarchical disaggregation as
described in [32]. The images seen in the figure show orthogonal projections of the spatial volume
current densities onto the outer surfaces of the cubical imaging domain. The active regions of the
antenna can be clearly identified.

The next considered scenario is a scattering problem, where a plane wave is incident on a corner
reflector as shown in Fig. 12. The NF samples assuming two perpendicular Hertzian dipole probes were
again computed by our MoM solver in strongly irregular sample locations as also seen in Fig. 12. The
incident plane wave was normally oriented with respect to the aperture of the triple reflector located in
the plane z = 577.5 mm and the near-fields have been sampled in the plane z = 1000 mm with an average
step size of λ/2 and an equally distributed random position variation in all three spatial directions with
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Figure 8. Love equivalent surface current densities for the configuration in Fig. 7: (a) electric surface
current density, (b) magnetic surface current density. Cut views of the assumed Huygens surface are
shown.
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Figure 9. Normalized 18 GHz FF pattern H-plane cuts for the HF907 antenna in Fig. 7: FIAFTA
results are shown in comparison to NSI results for equivalent surface current sources as illustrated in
Fig. 7 and for spherical harmonics sources in boxes with λ/2 side length. The difference with respect
to the NSI results is only shown for spherical harmonics sources.
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Figure 10. Normalized 18 GHz FF pattern E-plane cuts for the HF907 antenna in Fig. 7: FIAFTA
results are shown in comparison to NSI results for equivalent surface current sources as illustrated in
Fig. 7 and for spherical harmonics sources in boxes with λ/2 side length. The difference with respect
to the NSI results is only shown for spherical harmonics sources.
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Figure 11. Volumetric image of the R & S antenna HF907 (see [56] and Fig. 7) obtained by hierarchical
disaggregation and image formation from broadband FF data on the entire Ewald sphere. The FF data
from f = 8.0 GHz to 19 GHz was obtained from NF measurements by spherical eigenmode based NFFF
transformation with the NSI software [57].

an overall standard deviation of 0.707λ. The surface current density obtained with our MoM solver
and 26 042 697 RWG unknowns is shown in Fig. 13(a) and the electric NF amplitude distribution in the
3 243 601 irregular sample locations according to Fig. 12†† is depicted in Fig. 13(b). The inverse problem
solution has been obtained with spherical harmonics expansion according to Section 5.3 (32 877 360
expansion coefficients in total) of the radiation fields of source boxes with side length λ/2 located in a
plane above the aperture of the triple reflector. The computation time for one iteration of the inverse
problem solution was about 2300 sec on one core of the Intel I7 processor with 3.7 GHz and a setup
†† Only a few of the samples are seen.
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Figure 12. Corner reflector with a normally incident plane wave, (a) geometry of the reflector, where
the aperture is in the plane z = 577.5 mm, (b) illustration of the irregular sample locations in the plane
z = 1000 mm.
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Figure 13. (a) MoM surface current densities for the scattering configuration in Fig. 12, (b) electric
NF amplitude in the irregular sample locations as illustrated in Fig. 12, obtained by our MoM solver,
too.

time of about 200 sec was needed before the iterations could start. Utilizing the code with the global
FFT based interpolation and the separate octrees, an iteration time of about 320 sec was achieved on
8 cores of an Intel Xeon X5690 processor with 3.47 GHz. A bistatic FF radar cross section (RCS) cut
computed from the found spherical harmonics sources is compared to the MoM reference results in
Fig. 14. Fig. 14(a) illustrates the wide angular validity of the transformed far-fields and shows also the
achieved error level. Fig. 14(b) shows the same cut, but zoomed around the main peak. Additionally, it
shows transformation results obtained with a standard 2D FFT based planar plane wave transformation
algorithm as discussed in Section 3.1. For this transformation, the irregularly sampled field values were
assumed to belong to a regular sample grid with step size λ/2 and it is interesting to note that the main
peak and the first side lobes are still pretty well recovered.

The final example relates to the NFFF transformation of phaseless NF measurement data. We
consider an aperture antenna of dimension 30 cm×30 cm with its aperture located in the plane y = 0.0 m.
Synthetic measurement data [58] with two perpendicular open-ended waveguide probes were generated
in two measurement planes located at y = −2.2 m and at y = −5.6 m. The considered frequency was
5GHz and equidistant sampling with a step size of λ/4 was performed, resulting into a total of 71 824
sample points. In order to test the robustness of the phaseless NFFF transformation, white Gaussian
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Figure 14. Radar cross section (RCS) cut obtained by the FIAFTA code for the corner reflector in
Fig. 12: (a) complete cut with error level compared to MoM reference, (b) reduced angular range around
the main peak and comparison with a standard 2D FFT based transformation result, where the sample
locations have been assumed regular with λ/2 sample distance.
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Figure 15. FF pattern cuts obtained from amplitude-only data: The considered DUT was an aperture
antenna and open-ended rectangular waveguides were used as probes. The measurement and reference
data was generated synthetically. The phaseless transformation was performed with the FIAFTA code
combined with a nonlinear conjugate gradient solver as well as appropriate start vector estimation
and updating [18, 19]. The measured data was corrupted by additive Gaussian noise with an SNR of
15 dB and the valid angle due to the planar measurement setup is about 20 degree. (a) E-plane cut,
(b) H-plane cut.

noise according to a signal to noise ratio (SNR) of 15 dB was added to the measurement data. In the
field transformation with FIAFTA, the test antenna was represented by spherical harmonics within a
single source box (see Section 5.3). The linear FIAFTA transformation algorithm was combined with
a nonlinear conjugate gradient solver [18, 19] and appropriate start vector estimation and updating in
order to solve the nonlinear phaseless NFFF transformation problem. The estimated valid angle of
the transformation according to the planar measurement setup is 20 degree in both cuts as shown in
Fig. 15. Based on this and in view of the rather low SNR, the obtained transformation results are quite
satisfying.
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7. CONCLUSIONS

Electromagnetic field transformations are of importance for electromagnetic modelling and for
electromagnetic field measurements with subsequent field transformations. It was shown that the basic
field transformation equations are cumbersome to evaluate, and the consideration of a measurement
probe antenna makes the problem even more involved. In many application fields, electromagnetic field
transformation algorithms are based on eigenmode expansions of the pertinent Green’s functions in order
to realize very efficient transformation and even inversion algorithms by utilizing the orthogonality
properties of the eigenmodes and by utilizing Fast Fourier Transformation (FFT) algorithms, which
are, however, restricted to regular sampling of the field observations. Also, the orthogonality of the
eigenmodes is only usable for field observations on canonical surfaces such as planes, cylinders and
spheres. It was shown that efficient field transformation algorithms for irregular field observations or
source distributions can be constructed by hierarchical multilevel approaches, where the field expansion
with the purely propagating plane waves on the Ewald sphere has many advantages in this case,
such as the possibility to work with diagonal translation operators. The Fast Irregular Antenna Field
Transformation Algorithm (FIAFTA) is based on these concepts and it has many unique properties,
which make it a flexible and efficient antenna and scattering field transformation approach for a
wide variety of standard and specialized measurement tasks. FIAFTA supports arbitrarily located
measurement samples and it has the ability to compensate arbitrary measurement probes. On the
basis of an equivalent current formulation, it was shown that equivalent surface currents, plane wave
spectra, and even spherical harmonics expansions can be used as unknowns for the inverse transformation
problem to be solved by FIAFTA. The source grouping according to the hierarchical octree arrangement
allows to consider spatial localization information for all three types of equivalent sources. The
possibility to model scatterers or echoes by placing additional sources in the solution domain, gives
the ability for an effective suppression of echo distortions. Various results were shown to demonstrate
the capabilities of the fast irregular antenna field transformation algorithm.
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