Vol. 149
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-11-17
Realizing Flexible Ultra-Flat-Band Slow Light in Hybrid Photonic Crystal Waveguides for Efficient Out-of-Plane Coupling
By
Progress In Electromagnetics Research, Vol. 149, 281-289, 2014
Abstract
The realization of slow light with ultra-flat dispersion in hybrid photonic crystal (HPhC) waveguide is systematically investigated. Metal strips have been introduced to the photonic crystal (PhC) waveguide. The dispersion of the odd mode is commendably flattened in the leaky region. Ultra-flat-band slow light with nearly constant average group indices of 192 over 2 nm (i.e., 330 GHz) bandwidth is achieved. Flexible tuning for the ultra-high group index can also be achieved while keeping the normalized delay-bandwidth product fairly high. The introduction of the metal strips is further demonstrated to help reduce the azimuthal angle of the farfield and provide a high coupling efficiency.
Citation
Jianhao Zhang, Yaocheng Shi, and Sailing He, "Realizing Flexible Ultra-Flat-Band Slow Light in Hybrid Photonic Crystal Waveguides for Efficient Out-of-Plane Coupling," Progress In Electromagnetics Research, Vol. 149, 281-289, 2014.
doi:10.2528/PIER14102113
References

1. Hess, O., J. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Taskmakidis, "Active nanoplasmonic metamaterials," Nat. Mat., Vol. 11, 573-584, 2012.
doi:10.1038/nmat3356

2. Taskmakidis, K. L., A. D. Boardman, and O. Hess, "`Trapped’ rainbow storage of light in metamaterials," Nature, Vol. 450, 397-401, 2007.
doi:10.1038/nature06285

3. Taskmakidis, K. L., T. W. Pickering, J. M. Hamm, A. F. Page, and O. Hess, "Completely stopped and dispersionless light in plasmonic waveguides," Phys. Rev. Lett., Vol. 112, 167401-1-167401-5, 2013.

4. Pickering, T., J. M. Hamm, J. F. Page, S.Wuestner, and O. Hess, "Cavity-free plasmonic nanolasing enabled by dispersionless stopped light," Nat Comm., Vol. 5, 4972, 2014.
doi:10.1038/ncomms5972

5. Rao, V. S. C. M. and S. Hughes, "Single quantum-dot Purcell factor and Beta factor in a photonic crystal waveguide," Phys. Rev. B, Vol. 75, 205437, 2007.
doi:10.1103/PhysRevB.75.205437

6. Yao, P., C. V. Vlack, A. Reza, M. Petterson, M. M. Dignam, and S. Hughes, "Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides," Phys. Rev. B, Vol. 80, 195106, 2009.
doi:10.1103/PhysRevB.80.195106

7. Ek, S., E. Semenova, P. Lunnemann, K. Yvind, and J. Mork, "Enhanced gain in photonic crystal amplifiers," IEEE ICTON, 1-4, 2012.

8. Tran, N. V. Q., S. Combrie, and A. D. Rossi, "Directive emission from high-Q photonic crystal cavities through band folding," Phys. Rev. B, Vol. 79, 041101, 2009.
doi:10.1103/PhysRevB.79.041101

9. Benyatto, T., E. Gerelli, L. Milord, C. Jamois, A. Harouri, C. Chevalier, C. Seassal, A. Belarouci, X. Letartre, and P. Viktorovitch, "Slow Bloch mode cavity for optical trapping," IEEE ICTON, 1-5, 2013.

10. Brown, E. R. and O. B. McMabon, "High zenithal directivity from a dipole antenna on a photonic crystal," Appl. Phys. Lett., Vol. 68, 1300-1302, 1996.
doi:10.1063/1.115959

11. Temelkuran, B., M. Bayindir, E. ozbay, R. Riswas, M. M. Sigalas, G. Tuttle, and K. M. Ho, "Photonic crystal-based resonant antenna with a very high directivity," Appl. Phys. Lett., Vol. 87, 602-605, 2000.

12. Tevenot, M., C. Cheype, A. Reineix, and B. Jecko, "Directive photonic-bandgap antennas," IEEE Trans. on Micr. Theo. and Tech., Vol. 47, 2115-2122, 1999.
doi:10.1109/22.798007

13. Sa, Z. H., Y. Poo, R. X. Wu, and C. Xiao, "An implementation of directional antenna by self-biased magnetic photonic crystal," Appl. Phys. A, Vol. 117, No. 2, 427-431, Springer, 2014.
doi:10.1007/s00339-014-8689-4

14. Hu, J. and C. R. Menyuk, "Understanding leaky modes: Slab waveguide revisited," Advs. in Optics and Photon., Vol. 1, 58-106, 2009.
doi:10.1364/AOP.1.000058

15. Baba, T. and D. Mori, "Slow light engineering in photonic crystal," J. Phys. D: Appl. Phys., Vol. 40, 2659-2665, 2007.
doi:10.1088/0022-3727/40/9/S06

16. Krauss, T. F., "Slow light in photonic crystal waveguides," J. Phys. D: Appl. Phys., Vol. 40, 2666-2670, 2008.

17. Liang, J., L. Ren, M. Yun, X. Han, and X. Wang, "Wideband ultraflat slow light with large group index in a W1 photonic crystal waveguide," Appl. Phys. Lett., Vol. 110, 063103, 2011.

18. Frandsen, L. H., A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, "Photonic crystal waveguides with semi-low light and tailored dispersion properties," Opt. Express, Vol. 14, 9444-9450, 2006.
doi:10.1364/OE.14.009444

19. Mann, N., S. Combrie, M. Patterson, A. D. Rossi, and S. Hughes, "Reducing disorder-induced losses for slow light photonic crystal waveguides through Bloch mode engineering," Opt. Lett., Vol. 38, 4244-4247, 2013.
doi:10.1364/OL.38.004244

20. How, J., D. Gao, H. Wu, R. Hao, and Z. Zhou, "Flat band slow light in symmetric line defect photonic crystal waveguides," IEEE Photon. Tech. Lett., Vol. 21, 1571-1573, 2009.

21. Baba, T., T. Kawasaki, H. Sasaki, J. Adachi, and D. Mori, "Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide," Opt. Express, Vol. 16, 9245-9253, 2008.
doi:10.1364/OE.16.009245

22. Xu, Y., L. Xiang, E. Cassan, D. Gao, and X. Zhang, "Slow light in an alternative row of ellipse-hole photonic crystal waveguide," Appl. Opt., Vol. 52, 1155-1160, 2013.
doi:10.1364/AO.52.001155

23. Saynatjoki, A., M. Mulot, J. Ahopelto, and H. Lipsanen, "Dispersion engineering of photonic crystal waveguides with ring-shaped holes," Opt. Express, Vol. 15, 8323-8328, 2007.
doi:10.1364/OE.15.008323

24. Ma, J. and C. Jiang, "Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides," IEEE Photon. Tech. Lett., Vol. 20, No. 14, 1237-1239, 2008.
doi:10.1109/LPT.2008.926018

25. Ma, J. and C. Jiang, "Flatband slow light in asymmetric line-defect photonic crystal waveguide featuring low group velocity and dispersion," IEEE Journal of Quant. Electron., Vol. 44, No. 8, 763-769, 2008.
doi:10.1109/JQE.2008.924237

26. Hao, R., E. Cassan, H. Kurt, X. L. Roux, D. Marris-Morini, L. Vivien, H. Wu, Z. Zhou, and X. Zhang, "Novel slow light waveguide with controllable delay-bandwidth product and ultra-low dispersion," Opt. Express, Vol. 18, 5942-5950, 2010.
doi:10.1364/OE.18.005942

27. Hao, R., E. Cassan, X. L. Roux, D. Gao, V. D. Khanh, L. Vivien, H. D. Marris-Morini, and X. Zhang, "Improvement of delay-bandwidth product in photonic crystal slow-light waveguides," Opt. Express, Vol. 18, 16309-16319, 2010.
doi:10.1364/OE.18.016309

28. Johnson, P. and R. Christy, "Optical constants of noble metals," Phys. Rev. B, Vol. 6, 4370-4379, 1972.
doi:10.1103/PhysRevB.6.4370

29. Palik, E. D., Handbook of Optical Constants of Solids, Academic Press, 1998.