Vol. 149
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-10-14
Breast Imaging Using Microwave Tomography with Radar-Based Tissue-Regions Estimation
By
Progress In Electromagnetics Research, Vol. 149, 161-171, 2014
Abstract
Microwave tomography (MWT) and a radar-based region estimation technique are combined to create a novel algorithm for biomedical imaging with a focus on breast cancer detection and monitoring. The region estimation approach is used to generate a patient-specific spatial map of the breast anatomy that includes skin, adipose and fibroglandular regions, as well as their average dielectric properties. This map is incorporated as a numerical inhomogeneous background into an MWT algorithm based on the finite element contrast source inversion (FEM-CSI) method. The combined approach reconstructs finer structural details of the breast and better estimates the dielectric properties than either technique used separately. Numerical results obtained with the novel combined algorithmic approach, based on synthetically generated breast phantoms, show significant improvement in image quality.
Citation
Anastasia Baran, Douglas J. Kurrant, Amer Zakaria, Elise C. Fear, and Joe LoVetri, "Breast Imaging Using Microwave Tomography with Radar-Based Tissue-Regions Estimation," Progress In Electromagnetics Research, Vol. 149, 161-171, 2014.
doi:10.2528/PIER14080606
References

1. Meaney, P. M., M. W. Fanning, T. Raynolds, C. J. Fox, Q. Fang, C. A. Kogel, S. P. Poplack, and K. D. Paulsen, "Initial clinical experience with microwave breast imaging in women with normal mammography," Academic Radiology, Vol. 14, No. 2, 207-218, 2007.
doi:10.1016/j.acra.2006.10.016

2. Poplack, , S. P., T. D. Tosteson, W. A. Wells, B. W. Pogue, P. M. Meaney, A. Hartov, C. A. Kogel, S. K. Soho, J. J. Gibson, and K. D. Paulsen, "Electromagnetic breast imaging: Results of a pilot study in women with abnormal mammograms," Radiology, Vol. 243, No. 2, 350-359, 2007.
doi:10.1148/radiol.2432060286

3. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, T. M. Breslin, et al. "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Physics in Medicine and Biology, Vol. 52, No. 20, 6093, 2007.
doi:10.1088/0031-9155/52/20/002

4. Fear, E., J. Bourqui, C. Curtis, D. Mew, B. Docktor, and C. Romano, "Microwave breast imaging with a monostatic radar-based system: A study of application to patients," IEEE Transactions on Microwave Theory and Techniques, 2119-2128, 2013.
doi:10.1109/TMTT.2013.2255884

5. Zakaria, A., C. Gilmore, and J. LoVetri, "Finite-element contrast source inversion method for microwave imaging," Inverse Problems, Vol. 26, No. 11, 115010, 2010.
doi:10.1088/0266-5611/26/11/115010

6. Zakaria, A. and J. LoVetri, "Application of multiplicative regularization to the finite-element contrast source inversion method," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 9, 3495-3498, Sep. 2011.
doi:10.1109/TAP.2011.2161564

7. Grzegorczyk, T. M., P. M. Meaney, P. A. Kaufman, R. M. di Florio-Alexander, and K. D. Paulsen, "Fast 3-d tomographic microwave imaging for breast cancer detection," IEEE Transactions on Medical Imaging, Vol. 31, No. 8, 1584-1592, 2012.
doi:10.1109/TMI.2012.2197218

8. Nikolova, N. K., "Microwave imaging for breast cancer," IEEE Microwave Magazine, Vol. 12, No. 7, 78-94, 2011.
doi:10.1109/MMM.2011.942702

9. Shea, J. D., P. Kosmas, S. C. Hagness, and B. D. Van Veen, "Three dimensional microwave imaging of realistic numerical breast phantoms via a multiple-frequency inverse scattering technique," Medical Physics, Vol. 37, 4210, 2010.
doi:10.1118/1.3443569

10. Golnabi, A., P. Meaney, S. Geimer, and K. Paulsen, "Microwave imaging of the breast with incorporated structural information," Proceedings of SPIE, Vol. 7626, 76260P, 2010.
doi:10.1117/12.843855

11. Gilmore, C., A. Zakaria, S. Pistorius, and J. LoVetri, "Microwave imaging of human forearms: Pilot study and image enhancement," Journal of Biomedical Imaging, Vol. 2013, 19, 2013.

12. Fhager, A. and M. Persson, "Using a priori data to improve the reconstruction of small objects in microwave tomography," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 11, 2454-2462, 2007.
doi:10.1109/TMTT.2007.908670

13. Zakaria, A., A. Baran, and J. LoVetri, "Estimation and use of prior information in FEM-CSI for biomedical microwave tomography," Antennas and Wireless Propagation Letters, 1606-1609, 2012.
doi:10.1109/LAWP.2012.2237537

14. Kurrant, D. and E. Fear, "Technique to decompose nearfield reflection data generated from an object consisting of thin dielectric layers," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 8, 3684-3692, 2012.
doi:10.1109/TAP.2012.2201093

15. Kurrant, D. J. and E. C. Fear, "Regional estimation of the dielectric properties of inhomogeneous objects using near-field reflection data," Inverse Problems, Vol. 28, No. 7, 075001, 2012.
doi:10.1088/0266-5611/28/7/075001

16. Semenov, S. Y. and D. R. Corfield, "Microwave tomography for brain imaging: Feasibility assessment for stroke detection," International Journal of Antennas and Propagation, Vol. 2008, 8, 2008.