Vol. 60
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2014-08-22
Wave Transition and Trapping by Suddenly Created Periodic Plasma
By
Progress In Electromagnetics Research B, Vol. 60, 275-285, 2014
Abstract
Theory, numerical simulation, and experiment on the interaction of electromagnetic wave with suddenly created periodic plasma layers are presented. In the experiment, frequency-downshifted signals of considerably large spectral width and enhanced spectral intensity were detected. Numerical simulation of the experiment, that the plasma has a finite periodic structure and is created much faster than its decay, shows that the frequency downshifted waves have a broad power spectrum and are trapped in this plasma crystal until the plasma frequency drops to become less than the wave frequency. The spectral power increases exponentially with the frequency of the frequency downshifted wave, consistent with the experiment. The simulation reveals that wave trapping results in accumulating the frequency-downshifted waves generated in the finite transition period of plasma creation and decay. Though frequency-upshifted signals were missing in the experimental measurement, it might be attributed to the collision damping of the plasma.
Citation
Spencer P. Kuo, "Wave Transition and Trapping by Suddenly Created Periodic Plasma," Progress In Electromagnetics Research B, Vol. 60, 275-285, 2014.
doi:10.2528/PIERB14070605
References

1. Morgenthaler, F., "Velocity modulation of electromagnetic waves," IRE Trans. Microwave Theory Tech., Vol. 6, 167-172, 1958.
doi:10.1109/TMTT.1958.1124533

2. Felsen, L. B. and G. M. Whitman, "Wave propagation in time-varying media," IEEE Trans. Antennas Propag., Vol. 18, 242-253, 1970.
doi:10.1109/TAP.1970.1139657

3. Jiang, C. L., "Wave propagation and dipole radiation in a suddenly created plasma," IEEE Trans. Antennas Propag., Vol. 231, 83-90, 1975.
doi:10.1109/TAP.1975.1141007

4. Wilks, S. C., J. M. Dawson, and W. B. Mori, "Frequency up-conversion of electromagnetic radiation with use of an overdense plasma," Phys. Rev. Lett., Vol. 61, 337-340, 1988.
doi:10.1103/PhysRevLett.61.337

5. Kuo, S. P., A. Ren, and J. Huang, "Generation of a frequency chirped pulse using phase velocity transitions in a rapidly created plasma," Ultra Wideband EM Waves, 129-136, H. L. Bertoni, Ed., Plenum Press, NY, 1993.

6. Rappaport, H. L. and C. D. Striffler, "Frequency up-conversion and time-dependent tunneling of electromagnetic radiation in step-ionized plasmas," Phys. Plasmas, Vol. 1, 780-784, 1994.
doi:10.1063/1.870770

7. Yablonovitch, E., "Spectral broadening in the light transmitted through a rapidly growing plasma," Phys. Rev. Lett., Vol. 31, 877-879, 1973.
doi:10.1103/PhysRevLett.31.877

8. Yablonovitch, E., "Self-phase modulation of light in a laser-breakdown plasma," Phys. Rev. Lett., Vol. 32, 1101-1104, 1974.
doi:10.1103/PhysRevLett.32.1101

9. Kuo, S. P., "Frequency up-conversion of microwave pulse in a rapidly growing plasma," Phys. Rev. Lett., Vol. 65, No. 8, 1000-1003, 1990.
doi:10.1103/PhysRevLett.65.1000

10. Joshi, C. J., C. E. Clayton, K. Marsh, D. B. Hopkins, A. Sessler, D. Whittum, and , "Demonstration of the frequency upshifting of microwave radiation by rapid plasma creation," IEEE Trans. Plasma Sci., Vol. 18, 814-818, 1990.
doi:10.1109/27.62347

11. Kuo, S. P., Y. S. Zhang, and A. Ren, "Observation of frequency up-conversion in the propagation of a high power microwave pulse in a self-generated plasma," Phys. Lett. A, Vol. 150A, No. 2, 92-96, 1990.
doi:10.1016/0375-9601(90)90256-N

12. Kuo, S. P. and A. Ren, "Frequency up-conversion of a high power microwave pulse propagating in a self-generated plasma," J. Appl. Phys., Vol. 71, No. 11, 5376-5380, 1992.
doi:10.1063/1.350557

13. Kuo, S. P. and A. Ren, "Experimental study of wave propagation through a rapidly created plasma," IEEE Trans. Plasma Sci., Vol. 21, No. 1, 53-56, 1993.
doi:10.1109/27.221101

14. Kuo, S. P., A. Ren, and G. Schmidt, "Frequency downshift in rapidly ionizing media," Phys. Rev. E, Vol. 49, No. 4, 3310-3315, 1994.
doi:10.1103/PhysRevE.49.3310

15. Ishimaru, A., Electromagnetic Wave Propagation, Radiation, and Scattering, Prentice Hall, Englewood Cliffs, NJ, 1991.

16. Faith, J., S. P. Kuo, and J. Huang, "Frequency downshifting and trapping of an electromagnetic wave by a rapidly created spatial periodic plasma," Phys. Rev. E., No. 2, 1843-1851, 1997.
doi:10.1103/PhysRevE.55.1843

17. Qi, L. and Z. Yang, "Modified plane wave method analysis of dielectric plasma photonic crystal," Progress In Electromagnetics Research, Vol. 91, 319-332, 2009.
doi:10.2528/PIER09022605

18. Minin, I. V., O. V. Minin, Y. R. Triandaphilov, and V. V. Kotlyar, "Subwavelength diffractive photonic crystal lens," Progress In Electromagnetics Research B, Vol. 7, 257-264, 2008.
doi:10.2528/PIERB08041501

19. Blatt, F. J., Physics of Electronic Conduction in Solids, McGraw Hill, NY, 1970.

20. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 2nd Edition, Cambridge University Press, New York, NY, 1992, ISBN: 0- 521-43108-5.

21. Kuo, S. P. and J. Faith, "Interaction of an electromagnetic wave with a rapidly created spatially periodic plasma," Phys. Rev. E, Vol. 56, No. 2, 2143-2150, 1997.
doi:10.1103/PhysRevE.56.2143

22. Leung, K. M. and Y. F. Liu, "Full vector wave calculation of photonic band structures in facecentered- cubic dielectric media," Phys. Rev. Lett., Vol. 65, No. 21, 2646-2649, 1990.
doi:10.1103/PhysRevLett.65.2646

23. Yablonovitch, E., T. J. Gmitter, and K. M. Leung, "Photonic band structure: The face-centeredcubic case employing nonspherical atoms," Phys. Rev. Lett., Vol. 67, 2295-2298, 1991.
doi:10.1103/PhysRevLett.67.2295

24. Chen, J.-Y., J.-Y. Yeh, L.-W. Chen, Y.-G. Li, and C.-C. Wang, "Design and modeling for enhancement of light extraction in light-emitting diodes with archimedean lattice photonic crystals," Progress In Electromagnetics Research B, Vol. 11, 265-279, 2009.
doi:10.2528/PIERB08112704