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Wave Transition and Trapping by Suddenly Created Periodic Plasma

Spencer P. Kuo*

Abstract—Theory, numerical simulation, and experiment on the interaction of electromagnetic wave
with suddenly created periodic plasma layers are presented. In the experiment, frequency-downshifted
signals of considerably large spectral width and enhanced spectral intensity were detected. Numerical
simulation of the experiment, that the plasma has a finite periodic structure and is created much
faster than its decay, shows that the frequency downshifted waves have a broad power spectrum and
are trapped in this plasma crystal until the plasma frequency drops to become less than the wave
frequency. The spectral power increases exponentially with the frequency of the frequency downshifted
wave, consistent with the experiment. The simulation reveals that wave trapping results in accumulating
the frequency-downshifted waves generated in the finite transition period of plasma creation and
decay. Though frequency-upshifted signals were missing in the experimental measurement, it might
be attributed to the collision damping of the plasma.

1. INTRODUCTION

The space-time duality indicates that some analogies between phenomena of electromagnetic wave
propagation in spatially varying and in time varying media may be drawn straightforwardly [1, 2]. It is
indeed so for many of those, but some fundamental differences also exist. For example, the causality
concept forbids the time domain reflection phenomenon, the sharp discontinuity in the spatial domain
does not exist in reality in the time domain, and most significantly, wave can pre-exist in a time varying
medium but it has to propagate into a spatially varying medium.

Jiang [3] and Wilks et al. [4] studied the wave propagation in instantly generated uniform
plasma. They find that the wavelength stays fixed, the frequency is upshifted and the initially forward
propagating wave splits into a forward and a backward propagating component at a higher frequency.
A new phenomenon, which is not foreseen by the duality, is the generation of a static wiggler magnetic
field having the same wavelength as that of the original wave. Theory has been extended to consider
wave propagation in rapidly created plasma slab [5, 6]. As the transition period of the medium (e.g.,
finite creation time of the plasma) increases, it is shown numerically that the frequency spectra of the
frequency-upshifted waves are broadened [4, 5]. Consequently, the wavenumber spectra of these waves
after propagating out of the plasma slab are also broadened, unlike the spatial domain phenomenon
that the wavenumber spectrum of the wave will not be broadened after transmitting a pre-exist plasma
slab.

Experiments of wave interaction with rapidly created plasmas have been performed to demonstrate
the frequency upshifting and spectral broadening phenomena [7–13]. In the pulse propagation
experiments, frequency upshift by pulse-induced plasma was observed; but unexpected frequency
downshifted spectral lines were also recorded in the measurements. These lines together with those
of frequency upshifted led to the spectral breaking of the pulse spectrum [14]. It was verified that
the damping of the pulse by the plasma in the transition period was responsible for the frequency
downshifting result [14].
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A spatially periodic dielectric medium supports discrete branches of Floquet modes [15–17]. A
time harmonic incident electromagnetic wave is scattered into this medium to its Floquet modes of
different wavelengths [17, 18]. On the other hand, if this medium such as a plasma is created suddenly
in time, rather than preexisting in space, one would expect that the temporal transition and spatial
periodic structure of the plasma would convert the original wave to Floquet modes of this plasma at
different frequencies [16], which include upshifted frequencies greater than that by a single suddenly
created plasma slab of the same plasma density as well as downshifted frequency in the cutoff region of
a single plasma slab. This was investigated experimentally.

In the experiment, spatially periodic plasma was generated by the electric discharge of a set
of evenly separated parallel plate pairs; the plasma frequency was time dependent. Plasma first
increased rapidly and then decayed, with the time scales not necessarily short compared with the
wave period. The frequency downshifted waves have indeed been observed in the experiment; however,
the frequency upshifted waves were missing (i.e., they could not be distinguished conclusively from
the noise). Moreover, the spectral intensity and width of the frequency downshifted waves were
found to be unexpectedly high and wide. The experimental result was understood via the numerical
simulation which indicated that the periodic structure could trap the frequency downshifted waves.
The accumulation of the frequency downshifted waves during the transition period led to the significant
enhancement of the spectral intensity (20 to 50 dB above the noise level) and the spectral width.

In Section 2, theory of up-shifting electromagnetic wave frequency by instantly created uniform
plasma is presented. The theory is extended to an instantly created spatially periodic plasma
distribution; the formulation and analysis are presented in Section 3. The experiment and numerical
simulation of frequency shift and wave trapping by rapidly created periodic plasma are compared and
presented in Section 4. A summary is given in Section 5.

2. INTERACTION OF WAVE WITH SUDDENLY CREATED PLASMA

In unmagnetized plasma which varies arbitrarily in space and time, the wave equation is given by[
∂2

z − c−2∂2
t − ω2

p(z, t)/c2
]
ε(z, t) = 0 (1)

where ωp(z, t) = [N0(z, t)e2/meε0]1/2 is the electron plasma frequency, N0 is the electron density, e is the
magnitude of the electron charge, me is the electron mass, and ε0 is the permittivity of the free space.
If the plasma is uniform in space and stationary in time, i.e., N0 is a constant, the dispersion relation of
the electromagnetic (EM) mode of the plasma is obtained from (1) to be ω = (ω2

p + k2c2)1/2. We now
study the propagation of a plane wave when uniform plasma is suddenly created in the background.
Prior to the plasma creation at t = 0, the wave fields of this plane wave propagating in the free space
are

ε(z, t ≤ 0) = x̂E0 cos(k0z − ω0t) and h(z, t ≤ 0) = ŷ(E0/η0) cos(k0z − ω0t) (2)

where k0 = ω0/c is the wavenumber and η0 = (μ0/ε0)1/2 is the intrinsic impedance of the free space.
After a uniform plasma is suddenly created with ω2

p(z, t > 0) = ω2
p = const. at t = 0, the wave fields (2)

are not the solution of the wave Equation (1) anymore; but the wavelength λ0 of the wave and the
spatial distributions of the wave fields remain unchanged in the transition of the background, i.e.,

ε(z, t = 0+) = ε(z, t = 0−) = E0 cos k0z (3a)

and

h(z, t = 0+) = h(z, t = 0−) = (E0/η0) cos k0z (3b)

These in (3) serve as the initial conditions of Equation (1). The wave propagation in plasma follows
the dispersion relation ω = (ω2

p + k2
0c

2)1/2, as a result the frequency of the wave has to be upshifted to
ω = (ω2

p + ω2
0)

1/2. Thus the solution of (1) in t > 0 can be introduced to be

ε(z, t > 0) = x̂[A+ cos(k0z − ωt) + A− cos(k0z + ωt)] (4)

where

A+ + A− = E0 (5)
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so that (4) satisfies the initial condition (3a).
From Faraday’s Law ∇ × ε = −μ0∂th, the corresponding wave magnetic field h is obtained to be

h(z, t > 0) = ŷ(k0/μ0ω) [A+ cos(k0z − ωt) − A− cos(k0z + ωt)] + hw(z) (6)

where hw(z) is a static field. With the aid of the initial condition (3b), this static field is determined
to be

hw(z) = ŷ (k0/μ0ω) [(ω/ω0)E0 − (A+ − A−)] cos k0z (7)

This is a wiggler magnetic field generated together with the frequency upshifted waves in this instantly
created plasma.

A space charge current density, j = −eN0ve, associated with the fields (4) and (6) will be induced
in plasma. Their relationship is governed by the Ampere’s law, j = −ε0∂tε+∇×h. Although plasma is
conducting, it takes time for plasma to response to the wave fields. At t = 0+, plasma is just created and
there was no time for plasma to response to the wave fields, i.e., the velocity response ve(z, t = 0+) = 0.
Thus, at t = 0+, j = 0 and ∇ × h = ε0∂tε which yields

A+ − A− = (ω0/ω)E0 (8)

The product of (5) and (8) gives ω0E
2
0 = ω(A2

+ − A2−), an adiabatic invariant. The relations (5)
and (8) give A+ = (1 + ω0/ω)E0/2 and A− = (1 − ω0/ω)E0/2, which comply with the conservation
of momentum. The momentum density P of the wave is given by P = S/v2

g , where S = ε × h is the
Poynting vector and vg = ∂ω/∂k is the group velocity. At t = 0−, vg = c and S< = ẑ(E2

0/η0) cos2 k0z,
giving P< = ẑ(E2

0/η0c
2) cos2 k0z; at t = 0+, vg = (ω0/ω)c and S> = ẑ(k0/μ0ω)(A2

+ −A2−) cos2 k0z, thus
P> = ẑ(ω/ω0η0c

2)(A2
+ − A2−) cos2 k0z = ẑ(E2

0/η0c
2) cos2 k0z = P<.

The power conversion ratios to forward and backward frequency upshifted waves are Γ+ =
(ω0/ω)(1 + ω0/ω)2/4 and Γ− = (ω0/ω)(1 − ω0/ω)2/4, respectively. Some of the wave energy is
converted to the energy of the wiggler magnetic field (7). The amount of frequency upshift is given by
Δω = (ω2

p + ω2
0)

1/2 − ω0
∼= ω2

p/2ω0 for ω2
p � ω2

0, and ∼= ωp for ω2
p � ω2

0. However, the power conversion
efficiencies of frequency upshifted waves decrease as the frequency upshift increases.

3. SPATIALLY PERIODIC PLASMA

A wave interacts with suddenly created uniform plasma, its frequency is upshifted; this wave is not
trapped in the plasma. On the other hand, if plasma is created with a spatially periodic feature, the
wave is expected to be converted to Floquet modes, which include frequency upshifted and downshifted
and the frequency downshifted mode may be trapped in plasma. Consider that plasma is created rapidly
at t = 0 with a spatially periodic structure in the form of parallel slabs and has the plasma frequency

ω2
p(z, t) = 0 for t < 0 (9a)

and

ω2
p(z, t) = ω2

p0[1 − exp(−t/τr)] exp(−t/τd)
∑N−1

n=0
Pd/2(z − nL − L/2) for t > 0 (9b)

where τr and τd are the plasma rise and decay times respectively, with τd � τr; Pd/2(z − a) is a unit
rectangular pulse of width d centered about z = a, L is the separation between two adjacent slabs with
L ≥ d, the thickness of each plasma slab, and N is the total number of plasma slabs in the structure.
If N in (9) is rather large, this plasma can be considered as a periodic dielectric medium which is
characterized by the Floquet modes. In the following the dispersion equation for the Floquet modes of
an ideal periodic plasma, which is created instantly and does not decay, is derived and analyzed.

3.1. Modes of One-Dimensional Periodic Plasma

We now set the index n of the summation to run from −∞ to ∞, the rise time τr → 0, and
the decay time τd → ∞ in (9b), and analyze the EM modes in such a periodic plasma with
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ω2
p(z, t) = ω2

p0

∑∞
n=−∞ Pd/2(z − nL − L/2). Assume exp(−iωt) time dependence, the phasor solution

of (1) in one spatial period −� < z < � + d, where � = (L − d)/2, can be written as

E(z) =
{

(A exp(ikz) + B exp(−ikz), −� < z < �
C exp[ikn(z − �)] + D exp[−ikn(z − �)], � < z < � + d

(10)

where k = ω/c and n = (1 − ω2
p0/ω

2)1/2 are the free space wavenumber and the index of refraction of
the plasma slab, respectively. Applying the boundary conditions at z = ±� : E(±�−) = E(±�+) and
∂zE(±�−) = ∂zE(±�+) and using the Block wave condition:

E(z) = exp(−iβL)E(z + L) (11)

to replace E(−�−) by e−iβLE[(� + d)−], where E[(� + d)−] is given by (10) and β is the propagation
constant for the periodic structure as a whole, four algebraic equations are obtained. Three of them
can be solved to express B, C, D in terms of A as follows:

B = −
[
b − (

b2 − 1
)1/2

]
A

C = (1/2n)
{

(n + 1) exp(ik�) − (n − 1)
[
b − (b2 − 1)1/2

]
exp(−ik�)

}
A

D = (1/2n)
{

(n − 1) exp(ik�) − (n + 1)
[
b − (

b2 − 1
)]1/2 exp(−ik�)

}
A

(12)

where b = [(1 + n2) cos 2k� + 2ncot(knd) sin 2k�]/(n2 − 1). Substitute (12) into the fourth algebraic
equation, results to the dispersion equation

cos βL = cos(knd) cos 2k� − [
(n2 + 1)/2n

]
sin(knd) sin 2k� (13)

Since cos βL is an even periodic function, (13) has to be solved only for 0 ≤ βL ≤ π. Let
ε(z, t = 0−) = E0 cos k0z, this field distribution does not change at t = 0+, i.e., ε(z, t = 0+) = E0 cos k0z,
because the plasma is created instantly. The phasor of this field is given by E(z) = E0 exp(ik0z).
Substitute this phasor function into the Block wave condition (11), yields the relation β − k0 = −2π/L.

Equation (13) has multiple roots, ωj(β), j = 1, 2, . . ., each root contributes to a branch of modes
and covers a frequency range as a pass band. The dispersion curves of the branches ωj(β) form a band
diagram similar to that for electron waves in solids [19]. This band diagram identifies the frequencies of

Figure 1. Dispersion relation ω(β) for the case L = 0.6λ0, and ωp0 = 1.2ω0, where λ0 and ω0 are the
wavelength and angular frequency of an initial reference wave in free space. β/k0 = −2π/k0L + 1 =
−0.667, the vertical line is at the mirror point β/k0 = 0.667 and its intersecting points with the
dispersion curves determine the frequencies of the Floquet modes converted from the initial reference
wave after interacting with the suddenly created periodic plasma.
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all the Floquet modes at a given wavenumber. Shown in Figure 1 is an example of the dispersion curves
for the case L = 0.6λ0, d = 0.2λ0, and ωp0 = 1.2ω0 corresponding to the condition of the experiment
presented in Section 4, where λ0 and f0 = ω0/2π are the wavelength and initial frequency of a wave
in the free space. The frequency gap between two adjacent branches of the dispersion curves forms a
stop band, or a band gap, which is one of the characteristic features of periodic structures. Hence, for
a given βL, there exists infinite number of Floquet modes oscillating at discrete frequencies ωj(β). The
vertical line in the figure is at the mirror point of β/k0 = −2π/k0L + 1 = −0.667 and its intersecting
points with the dispersion curves determine the frequencies of the Floquet modes converted from the
initial reference wave (ω0, k0) after interacting with this instantly created periodic plasma. Substitute
k = kj = ωj(β)/c into (10) and (12), and use (12) to replace the coefficients B, C and D in (10) in
terms of A, the field distribution of the jth Floquet mode is obtained.

3.2. Wave Propagation in Suddenly Created Periodic Plasma

Propagation of a plane wave in such a medium, transition from the free space to a periodically structured
plasma created instantly at t = 0, is analyzed in the following. The wave fields in t < 0 are the same as
those given in (2), which imposes the initial conditions (3a) and (3b). In t > 0, the wave has to satisfy
the new dispersion relations governed by (13); thus, it is converted to a combination of infinite number
of Floquet modes given by

ε(z, t > 0) = x̂ΣAj± cos(k0z ∓ ωjt) (14)

where the oscillation frequencies ωj(β) are the roots of (13), 0 ≤ −β = 2mπ/L− k0 ≤ π/L and m is an
integer. The amplitudes Aj± are imposed by the initial condition (3a) to be

Σ∞
j=1(Aj+ + Aj−) = E0 (15)

From Faraday’s Law ∇ × ε = −μ0∂th, the corresponding wave magnetic field h is obtained to be

h(z, t > 0) = ŷΣ ± (k0/μ0ωj)Aj± cos(k0z ∓ ωjt) + hw(z) (16)

subjects to the initial condition h(z, t = 0) = (k0/μ0ω0)E0 cos k0z. Therefore, a wiggler magnetic field

hw(z) = ŷ[(k0/μ0ω0)E0 − Σ ± (k0/μ0ωj)Aj±] cos k0z (17)

is generated in the periodic plasma. With the aid of the initial condition j(z, t = 0+) = 0, the Ampere’s
law ∇ × h = j + ε0∂tε at t = 0+ is applied to yield

Σj(ωj/ω0)(Aj+ − Aj−) = E0 (18)

The relations (15) and (18) are combined to be

Σj[(1 − ωj/ω0)Aj+ + (1 + ωj/ω0)Aj−] = 0 (19)

In the limit of � → 0, it approaches to uniform plasma situation; (13) has a root k2n2
∼= β, which is

the dispersion relation of the first frequency upshifted Floquet mode, i.e., in the j = 2 branch; this root
gives ω2

∼= (ω2
p0 + β2c2)1/2, approaching a uniform plasma dispersion relation presented in Section 2,

where A2− = [(1 − ω0/ω2)/(1 + ω0/ω2)]A2+ is derived. Thus a solution of (19), which matches the
asymptotic solution, is

Aj− = [(1 − ω0/ωj)/(1 + ω0/ωj)]Aj+ (20)

which leads to

Σj [2/(1 + ω0/ωj)]Aj+ = E0 (21)
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Figure 2. A schematic of the experimental setup.

4. EXPERIMENT AND NUMERICAL SIMULATION

4.1. Experimental Setup

A conducting plate is cut with 10 rectangular slots located evenly on the plate to make an electrode
having a periodic pattern. A pair of such electrodes aligned parallelly with 16 cm separation is installed
in a vacuum chamber where the background air pressure is about 1 torr. A Marx bank consisting of four
simultaneously fired capacitors, each rated at 1.9 µF and 60 kV, is connected to the electrodes. As the
Marx bank is fired, periodically distributed plasma is created suddenly by the pulse discharge. Shown
in Figure 2 is an overview of the experimental setup.

In the experiment, a CW microwave (∼ 1mW) is launched into the vacuum chamber through
an S-band horn antenna from one side. This incident signal is transmitted through this periodically
structured plasma generated by the pulse discharge and is received by a horn antenna which is located
at the other side of the chamber and connected to a spectrum analyzer for recording. Floquet modes
described in Section 3.2. are expected to be produced, which form spectral peaks in the power spectrum.
However, these modes generated in each discharge are short pulses and cannot be all recorded in one
sweep of the spectrum analyzer. In other words, in each Marx bank discharge the spectrum analyzer
stores a sample point of the power spectrum of the transmitted signal. After several hundred random
Marx bank discharges, the stored sample points cover the entire power spectrum of the transmitted
signal.

4.2. Experimental Result

Shown in Figure 3 is an experimentally recorded power spectrum of the incident (arrowed) and frequency
downshifted signals [16]. The incident wave frequency is slightly below 3.1 GHz (indicated by an arrow)
and the discharge voltage is 60 kV. The recorded spectrum shows only large downshifted components.

4.3. Numerical Simulation

We now solve (1) numerically for suddenly created periodic plasma characterized by (9). Following
dimensionless parameters and variable are introduced

d/λ0 → d, L/λ0 → L, ω0t → t, ωp0/ω0 → ωp0, α = (ω0τr)−1 and γ = (ω0τd)−1.

A finite difference time domain method [20] is used to solve the wave Equation (1) for computing
the observed field E (in time) at a particular spatial location. This time series is subsequently Fast
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Figure 3. Experimentally recorded power spectrum of the incident (arrowed) and downshifted signals.
The resolution bandwidth and the sweeping speed of the spectrum analyzer are 100 kHz and 10 s/div.,
respectively.

(a) (b)

Figure 4. (a) Time dependence of the observed signal outside the plasma structure with N = 11,
L = 0.6, d = 0.2, ωpo = 1.2, α = 0.1 and γ = 0, and (b) its power spectrum.

Fourier Transformed (FFT) and the power spectrum found by multiplying the time series’ FFT by its
complex conjugate.

Choose parameters used in the simulation closely corresponding to the experiment [16], thus,
ω0 = 2π × 3.1 GHz, N = 11, ωp0 = 1.2, α = 0.1, γ = 2 × 10−3, L = 0.6 and d = 0.2; and the
dispersion relation of the ideal structure (i.e., N → ∞, α → ∞, and γ = 0) presented in Figure 1 helps
for justifying the simulation results on the spectra of frequency-shifted signals.

We first consider the γ = 0 case (i.e., rapidly created plasma layers do not decay) to demonstrate
the trapping effect of the periodic plasma layers. All the time plots display the observed signals, which
are normalized to the amplitude of the incident signal. The spectral plots show the power spectra of the
computed time series of the signals as observed inside (at z = 6) or outside the plasmas (at z = 6.4),
using the incident wave as a reference. Presented in Figures 4(a) and 4(b) are the time dependence of
the observed signal outside the plasma structure and its power spectrum, respectively. The time plot in
Figure 4(a) shows that initially the observed signal keeps a large and near constant amplitude until the
plasma density approaches a steady state overdense level (i.e., ωp0 > 1). The signal then decays to a
small level, implying no more signals transmit through the structure after the plasma density in layers
reaches the steady state overdense level. This is realized that only frequency upshifted signals, which
were generated during the short period of plasma creation, were not cutoff from propagation through
the plasma layers. The power spectrum presented in Figure 4(b) also exhibits only an upshifted part,
confirming the explanation.

However, the dispersion curves shown in Figure 1 indicate that a frequency downshifted signal
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should also be generated during the short period of plasma creation. To show that the downshifted
waves indeed exist and are trapped in the plasma, we move the observation point to be inside the
periodic structure between two adjacent layers. The time function and power spectrum of the observed
signal are presented in Figures 5(a) and 5(b), respectively. Figure 5(a) shows that the signal reaches
a steady state level, rather than decaying to zero as that observed in Figure 4(a). This is an expected
result as the downshifted wave is forever trapped to be the steady state signal after the escape of the
upshifted waves. Indeed, the power spectrum presented in Figure 5(b) includes both up and downshifted
lines. The downshifted spectrum has a sharper distribution and contains less spectral energy than that
contained in the upshifted spectrum.

We now consider the experimental situation [16] that plasma decays at a rate γ = 2 × 10−3. The
observation point is set outside the plasma structure. It is expected to detect both frequency upshifted
and downshifted waves because the downshifted waves will not be trapped after the decay of the plasma.
The time plot presented in Figure 6(a) shows that initially the observed signal is of large amplitude,
decays to a small level, and later grows again. This can be explained as follows. Immediately after
the plasma is created, the upshifted waves propagate out of the plasma. This explains the first part
of the waveform with large amplitude. Once these waves are clear of the plasma, the signal amplitude
drops as the downshifted waves remain trapped. However, as the plasma decays, the incident wave
can again propagate through it to be converted and more and more of the downshifted waves can
escape the trapping. These waves are responsible for the later rise in signal amplitude. The time delay
between ωp falling below one and the rise in the signal in t > 50 of Figure 6(a) can be explained by the

(a) (b)

Figure 5. (a) Time dependence of the observed signal inside the plasma structure with N = 11,
L = 0.6, d = 0.2, ωpo = 1.2, α = 0.1 and γ = 0, and (b) its power spectrum.

(a) (b)

Figure 6. A simulation of the experiment with N = 11, L = 0.6, d = 0.2, ωpo = 1.2, α = 0.1 and
γ = 0.002. (a) Time dependence of the observed signal outside the plasma structure and (b) its power
spectrum with prominent experimental points superimposed.
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(a) (b)

Figure 7. Comparison of the observed signal in Figure 6(a) with the original signal, (a) at early time
showing upshifted frequency, and (b) at later time showing downshifted frequency.

finite propagation time of the waves from the plasma to the observation point. The power spectrum
of this signal presented in Figure 6(b) reveals the usual upshifted peaks, but also a large downshifted
part whose log power spectrum varies almost linearly with the frequency. The prominent experimental
points extracted from Figure 3 are also presented in Figure 6(b) for comparison with the result of the
numerical simulation. As shown, the simulation result matches well with that of the experiment.

A closer inspection on the detected signal reveals that the initial large wave packet contains only
upshifted components and the latter only downshifted, as shown in Figures 7(a) and 7(b), respectively.
Frequency downshifted waves are generated and trapped in the available period during the plasma
growth and decay.

The trapped incident wave accumulates its energy during the finite growth period of the plasma and
then emerges during the decaying period of the plasma. This leads to an enhancement of the spectral
intensity and width of the frequency downshifted signal, a phenomenon which is not obvious from the
band diagram presented in Figure 1.

With the aid of the simulation interpretation, the experiment demonstrates a unique approach to
trap wave in an overdense periodic plasma. The finite growth and decay of suddenly created plasma
broaden the spectrum of the frequency downshifted signals, but this plasma is able to generate more
frequency downshifted waves and accumulate those waves.

5. SUMMARY

Applying Block’s theorem to the boundary conditions, the dispersion relation of an EM wave
propagating in a spatially periodic plasma medium is derived. It consists of infinite branches of
dispersion curves, each one representing a Floquet mode and covering a frequency range as a pass
band. The frequency gap between two adjacent branches of these dispersion curves forms a band gap
as stop band. An interesting feature of the dispersion curves is that the pass bands extend to the region
below the cutoff frequency (ωp) of uniform plasma. It infers that a suddenly created periodic plasma can
convert a pre-existing electromagnetic wave into both frequency upshifted and downshifted new waves.
The numerical simulation shows that frequency downshifted waves are indeed generated and trapped
in plasma. The plasma decay enables more frequency downshifted waves of increasing frequency (i.e.,
decreasing in the amount of frequency downshift) to be trapped; it results in a significant enhancement
of the spectral width and intensity, explaining the experimental observation.

The wave impedance of the frequency downshifted mode is large in the free space region and small
in the plasma layer, but it has the opposite distribution for the frequency upshifted modes [21]. This
characteristic difference indicates that the trapped frequency downshifted waves are experience reduced
collision damping in the plasma layer. On the other hand, the untrapped frequency upshifted waves
undergo enhanced collision damping in the plasma layer. It provides a plausible explanation why only
the frequency downshifted signals were detected convincingly in the experiments [16] with considerably
enhanced spectral width and intensity while the frequency upshifted signals were not observed.
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Trapping of waves in periodic dielectric media has been investigated extensively in the photonic
research [22–24]. The mechanism of wave trapping is to have the wave frequency in the stop bands of the
periodic dielectric medium. This trapping process has to overcome the difficulty of coupling radiation
into the cavity surrounded by the cutoff structure (i.e., the periodic structure). On the other hand, this
difficulty is not encountered in the time domain case as demonstrated experimentally. It is the periodic
dielectric medium (plasma) suddenly created around the waves, rather than that wave has to penetrate
into the cavity. Moreover, the trapped waves in the time domain case are distributed in the periodic
structure and are the modes of the periodic structure.
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