1. Bott, R., "On some recent interactions between mathematics and physics," Canad. Math. Bull., Vol. 28, No. 2, 129-164, 1985.
doi:10.4153/CMB-1985-016-3
2. Gockeler, M. and T. Schuker, Differential Geometry, Gauge Theories, and Gravity, Cambridge University Press, 1987.
doi:10.1017/CBO9780511628818
3. Burgess, M., Classical Covariant Fields, Cambridge University Press, 2002.
doi:10.1017/CBO9780511535055
4. Zee, A., Quantum Field Theory in a Nutshell, Princeton University Press, Princeton, NJ, 2003.
5. Teixeira, F. L. and W. C. Chew, "Lattice electromagnetic theory from a topological viewpoint," J. Math. Phys., Vol. 40, No. 1, 169-187, 1999.
doi:10.1063/1.532767
6. Teixeira, F. L., "Differential forms in lattice field theories: An overview," ISRN Math. Phys., Vol. 2013, 487270, 2013.
7. Tarhasaari, T., L. Kettunen, and A. Bossavit, "Some realizations of a discrete Hodge operator: A reinterpretation of finite element techniques," IEEE Trans. Magn., Vol. 35, No. 3, 1494-1497, 1999.
doi:10.1109/20.767250
8. Misner, C. W., K. S. Thorne, and J. A. Wheeler, Gravitation, Freeman and Co., New York, 1973.
9. Deschamps, G. A., "Electromagnetics and differential forms," Proc. IEEE, Vol. 69, 676-696, 1982.
10. Schenberg, M., "Electromagnetism and gravitation," Braz. J. Phys., Vol. 1, 91-122, 1971.
11. Warnick, K. F. and P. Russer, "Two, three, and four-dimensional electromagnetics using differential forms," Turk. J. Elec. Engin., Vol. 14, No. 1, 153-172, 2006.
12. Gross, P. W. and P. R. Kotiuga, "Data structures for geometric and topological aspects of finite element algorithms," Progress In Electromagnetics Research, Vol. 32, 151-169, 2001.
doi:10.2528/PIER00080106
13. Teixeira, F. L., "Geometrical aspects of the simplicial discretization of Maxwell’s equations," Progress In Electromagnetics Research, Vol. 32, 171-188, 2001.
doi:10.2528/PIER00080107
14. Tonti, E., "Finite formulation of the electromagnetic field," Progress In Electromagnetics Research, Vol. 32, 1-44, 2001.
doi:10.2528/PIER00080101
15. Gross, P. W. and P. R. Kotiuga, Electromagnetic Theory and Computation: A Topological Approach, Cambridge University Press, 2004.
doi:10.1017/CBO9780511756337.002
16. Adams, D. H., "R-torsion and linking numbers from simplicial Abelian gauge theories," High Energy Physics — Theory, 9612009, 1996.
17. Sen, S., S. Sen, J. C. Sexton, and D. H. Adams, "Geometric discretization scheme applied to the Abelian Chern-Simons theory," Phys. Rev. E, Vol. 61, No. 3, 3174-3185, 2000.
doi:10.1103/PhysRevE.61.3174
18. Clemens, M. and T. Weiland, "Discrete electromagnetism with the finite integration technique," Progress In Electromagnetics Research, Vol. 32, 65-87, 2001.
doi:10.2528/PIER00080103
19. Schuhmann, R. and T. Weiland, "Conservation of discrete energy and related laws in the finite integration technique," Progress In Electromagnetics Research, Vol. 32, 301-316, 2001.
doi:10.2528/PIER00080112
20. He, B. and F. L. Teixeira, "On the degrees of freedom of lattice electrodynamics," Phys. Lett. A, Vol. 336, No. 1, 1-7, 2005.
doi:10.1016/j.physleta.2005.01.001
21. Kheyfets, A. and W. A. Miller, "The boundary of a boundary in field theories and the issue of austerity of the laws of physics," J. Math. Phys., Vol. 32, No. 11, 3168-3175, 1991.
doi:10.1063/1.529519
22. Guth, A. H., "Existence proof of a nonconfining phase in four-dimensional U(1) lattice field theory," Physical Review D, Vol. 21, No. 8, 2291-2307, 1980.
doi:10.1103/PhysRevD.21.2291
23. Whitney, H., Geometric Integration Theory, Princeton University Press, Princeton, NJ , 1957.
24. Bossavit, A., "Generalized finite differences’ in computational electromagnetics," Progress In Electromagnetics Research, Vol. 32, 45-64, 2001.
doi:10.2528/PIER00080102
25. He, B. and F. L. Teixeira, "Geometric finite element discretization of Maxwell equations in primal and dual spaces," Phys. Lett. A, Vol. 349, No. 1–4, 1-14, 2006.
doi:10.1016/j.physleta.2005.09.002
26. Schwarz, A. S., Topology for Physicists, Springer-Verlag, New York, 1994.
doi:10.1007/978-3-662-02998-5_1
27. Bossavit, A., "Whitney forms: A new class of finite elements for three-dimensional computations in electromagnetics," IEE Proc. A, Vol. 135, 493-500, 1988.
28. Salamon , J., J. Moody, and M. Leok, "Geometric representations of Whitney forms and their generalization to Minkowski spacetime," Numerical Analysis, 1402.7109, 2014.
29. Buffa, A. and S. Christiansen, "A dual finite element complex on the barycentric refinement," Math. Comput., Vol. 76, 1743-1769, 2007.
doi:10.1090/S0025-5718-07-01965-5
30. Osterwalder, K. and R. Schrader, "Axioms for Euclidean Green’s functions," Comm. Math. Phys., Vol. 31, No. 2, 83-112, 1973.
doi:10.1007/BF01645738
31. Montvay, I. and G. Munster, Quantum Fields on a Lattice, Cambridge University Press, 1994.
doi:10.1017/CBO9780511470783
32. Ambjorn, J., J. Jurkiewicks, and R. Loll, "Emergence of a 4D world from causal quantum gravity," Phys. Rev. Lett., Vol. 93, 131301, 2004.
doi:10.1103/PhysRevLett.93.131301
33. Ambjorn, J., A. Gorlich, J. Jurkiewicks, and R. Loll, "Nonperturbative quantum gravity," Phys. Rep., Vol. 519, 127, 2012.
doi:10.1016/j.physrep.2012.03.007
34. Jordan, S. and R. Loll, "Causal dynamical triangulations without preferred foliation," High Energy Physics — Theory, 1305.4582, 2013.
35. Erickon, J., D. Guoy, J. M. Sullivan, and A. Ungor, "Buliding space-time meshes over arbitrary spatial domains," Engg. Computers, Vol. 290, 342-353, 2005.
doi:10.1007/s00366-005-0303-0
36. Thite, S., "Adaptive spacetime meshing fod discontinuous Galerkin methods," Comp. Geom., Vol. 42, No. 1, 20-44, 2009.
doi:10.1016/j.comgeo.2008.07.003
37. Stern, A., Y. Tong, M. Desbrun, and J. E. Mardsen, "Variational integrators for mMxwell’s equations with sources," PIERS Online, Vol. 4, No. 7, 711-715, 2008.
doi:10.2529/PIERS071019000855
38. Kim, J. and F. L. Teixeira, "Parallel and explicit finite-element time-domain method for Maxwell’s equations," IEEE Trans. Antennas Propagat., Vol. 59, No. 6, 2350-2356, 2011.
doi:10.1109/TAP.2011.2143682
39. Tarhasaari, T., L. Kettunen, and A. Bossavit, "Some realizations of the discrete Hodge operator: A reinterpretation of finite element techniques," IEEE Trans. Magn., Vol. 35, No. 3, 1494-1497, 1999.
doi:10.1109/20.767250
40. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell’s equation is isotropic media," IEEE Trans. Antennas Propagat., Vol. 14, No. 3, 302-307, 1969.
41. Taflove, A., Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, Norwood, MA, 1995.
42. Mattiussi, C., "The geometry of time-stepping," Progress In Electromagnetics Research, Vol. 32, 123-149, 2001.
doi:10.2528/PIER00080105