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Abstract—We discuss the ab initio rendering of four-dimensional (4-d) spacetime of Maxwell’s
equations on random (irregular) lattices. This rendering is based on casting Maxwell’s equations in the
framework of the exterior calculus of differential forms, and a translation thereof to a simplicial complex
whereby fields and causative sources are represented as differential p-forms and paired with the oriented
p-dimensional geometrical objects that comprise the set of spacetime lattice cells (simplices). We pay
particular attention to the case of simplicial spacetime lattices because these can serve as building blocks
of lattices made of more generic cells (polygons). The generalized Stokes’ theorem is used to construct
discrete calculus operations on the lattice based upon combinatorial relations depending solely on the
connectivity and relative orientation among simplices. This rendering provides a natural factorization
of (lattice) 4-d spacetime Maxwell’s equations into a metric-free part and a metric-dependent part. The
latter is encoded by discrete Hodge star operators which are built using Whitney forms, i.e., canonical
interpolants for discrete differential forms. The derivation of Whitney forms is illustrated here using
a geometrical construction based on the concept of barycentric coordinates to represent a point on a
simplex, and the generalization thereof to represent higher-dimensional objects (lines, areas, volumes,
and hypervolumes) in 4-d. We stress the role of the primal lattice, the barycentric dual lattice, and
the barycentric decomposition lattice in achieving a complete description of the lattice theory. Lattice
Maxwell’s equations based on the exterior calculus of differential forms and on the use of Whitney forms
as field interpolants inherits the symplectic structure and discrete analogues of conservation laws present
in the continuum theory, such as energy and charge conservation. It also provides precise localization
rules for the degrees of freedom associated with the different fields and sources on the lattice, and design
principles for constructing consistent numerical solution methods that are free from spurious modes,
spectral pollution, and (unconditional) numerical instabilities. We also briefly consider the relationship
between lattice 4-d Maxwell’s equations and some incarnations of discretization schemes for Maxwell’s
equations in (3 + 1)-d, such as finite-differences and finite-elements.

1. INTRODUCTION AND MOTIVATION

The need for discretization of field equations arises in many areas. The discretization allows for numerical
computation of (often approximate) field solutions in non-perturbative regimes and on complex domains
with non-trivial boundary and/or initial conditions. The discretization of Maxwell’s equations invariably
causes changes on the properties of the field solutions (“numerical artifacts”). Some of these changes
are unavoidable, such as the appearance of a finite cut-off frequency, the breaking of translational and
rotational symmetries (although some discrete symmetries may still remain due to the periodicity of
the lattice), aliasing, and the presence of grid-dispersion (“numerical dispersion”) effects. Nevertheless,
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these types of artifacts are controllable in the sense that they can be made arbitrarily small by employing
progressively smaller lattice elements (i.e., additional degrees of freedom).

Associated to many discretization schemes, however, there are other more deleterious types of
numerical artifacts stemming from the violation of conservation laws such as momentum, energy, charge,
and symmetries such as time-reversal invariance, among others’. Examples of such type of numerical
artifacts are unconditional instabilities and/or artificial dissipation (in time-marching schemes) and
spectral pollution through the emergence of spurious modes. If present, these latter types of numerical
artifacts are more difficult (or even unfeasible) to control.

A basic motivation behind the ab initio derivation of lattice Maxwell’s equations stems from the need
to obtain a consistent representation of electromagnetic fields on irregular lattices, whereby conservation
laws and other basic theorems of the continuum theory are automatically preserved and only the first
type (controllable) of approximation artifacts, as alluded above, are present. To provide sufficient
generality, it is desirable to achieve consistency independently from the metric properties of the lattice
(i.e., from the geometrical shapes of the individual lattice cells), as the latter can vary across lattice
instantiations according to the intended application(s). Another, secondary motivation is to confine
the source of the approximation artifacts to a minimum number of discretization steps. Finally, the
ab initio derivation of Maxwell’s equations also provides a route for the identification and systematic
classification of potential sources of inconsistency arising in commonly employed discretization methods
such as finite elements, finite differences, and finite elements.

2. FUNDAMENTALS

The action for the electromagnetic field in a four-dimensional (4-d) spacetime domain Q4 with flat
metric is given by the integral [1-4]

S[A,j]:/mc:/m(;FA*F—AA*j) (1)

where L is the Lagrangian 4-form, F' = dA the Faraday 2-form, A the potential 1-form, %7 the charge-
current density 3-form, A the (anti-commutative) exterior product, and d the 4-d exterior derivative [6].
The Hodge star operator * [5-7] is a metric-dependent map (isomorphism) from p-forms to (n—p)-forms,
p=0, ..., n (here, n = 4). By letting a denote a small variation on A, using integration by parts, and
ignoring second-order terms in a, one obtains

5S:S[A+a,j]—S[A,j]:/ da N\ *dA — a*xJ = aN(dxdA—=*T) (2)
Qy Q4 Q4

so that, upon enforcing the stationary principle S = 0 in the classical case, the following Euler-Lagrange
equation results

dG = xJ (3)

where G is the Maxwell 2-form, G = *F [1,5,6,8,9]. In addition, since d? = 0, the relation F = dA
implies

dF =0 (4)
Taken together, (3) and (4) constitute Maxwell’s equations in 4-d [6,8-11]. Apart from its very compact
form, these relations show two salient features [5, 6]. First, they naturally split into a metric-dependent
part (3) and a purely topological (i.e., metric-free or manifestly invariant under diffeomorphisms)
part (4). This is because d is a metric-free operator [12] and, as such, only (3) is modified under a
change on the metric (as encoded by the * operator), whereas (4) remains invariant. The second feature
is that (3) and (4) can be ezactly transcribed onto a irregular lattice because both d and * operators
admit well-defined, direct counterpart representations on such lattices. We will discuss below these
observations in detail, and work out some of their practical consequences.

T Note that, oftentimes, conservation laws can be preserved at the discrete level upon a suitable redefinition of the conserved
quantities. The lack of conservation alluded here is w.r.t. any appropriate redefinition of “conserved” quantities. Also, recall that,
from Noether’s theorem, conservation laws are a consequence of underlying symmetries, i.e., violations of the former are due to the
breaking of the latter. For example, violation of energy/momentum conservation is caused by lack of invariance under time/space
translations.
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For notational simplicity, the wedge symbol A will be at times suppressed in what follows when its
presence is clear from the context; thus, e.g., dz A dy — dady = —dydx.

3. DIFFERENTIAL FORMS ON A LATTICE

3.1. Primal, Dual, and Decomposition Lattices

Some of the definitions used in [13] are generalized here from 3-d to 4-d, with some slight changes in
notation. Given a set of affine points ug, u1, ..., up, p =0, ..., 4 in 4-d spacetime, a p-simplex o, is

U3

U

Figure 1. Geometrical construction for the barycentric coordinate A; of a point u in a 2-simplex. The
value A1 is equal to the ratio between the area indicated in red and the total area of the 2-simplex. An
analogous construction can be used in any p-simplex.

simplicial primal lattice

N

barycentric dua lattice

Figure 2. Depiction of a 2-d primal/dual lattice construction. Edges indicated in red color constitute
(a) the primal lattice and (b) the barycentric dual lattice. Note that the primal lattice is simplicial but
the dual lattice is not so. Note also that individual edges of the dual lattice are not straight, but are
composed of two straight segments. The barycentric decomposition lattice underlies these two lattices,
with its remaining set of edges indicated in blue color. The barycentric decomposition mesh is sill a
simplicial mesh, and is symmetric under permutation of primal lattice nodes. The above construction
can be generalized to any number of dimensions.
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the region spanned by u = ¥ A\ju; for all possible values of \; € [0,1], where \; is the barycentric
coordinate associated with u; such that > j\; = 1. Fig. 1 shows, using the 2-d case as example, the
geometrical construction of the barycentric coordinate A; associated to a point u within a 2-simplex
(triangle). In this case, the value of A is simply the ratio between the areas of the triangles defined by
[u, ug, ug] and by [u1, ug, ug]. A similar construction can be made for a general p-simplex. A 0-simplex
is simply a point, a 1-simplex is an edge (line segment), a 2-simplex is a face or plaquette (triangle),
a 3-simplex is an elementary volume (tetrahedron), and a 4-simplex is an elementary hypervolume
(penthachoron). For convenience, we may denote o}, = [ug, u1,...,u,|. Note that an oriented p-simplex
changes sign under an orientation reversal, so that, for example [u1, ug, us] = [us, u1, ug] = —[ug, u1, usl.

A simplicial complex in 4-d corresponds to a set of simplices of p = 0, ..., 4 degrees comprising
an irregular (in general) tessellation of spacetime, i.e., where the boundaries of each p-simplex comprise
a set of lower dimensional, (p — 1)-simplices, for p = 1, ..., 4 (that is, with no overlaps or gaps). We
identify such simplicial complex as the primal lattice. Associated to any primal lattice, two other affine
invariant lattice constructions of interest exist, viz. the barycentric dual lattice and the barycentric
decomposition lattice, as illustrated in Fig. 2. In what follows, p-cells of the dual lattice are denoted as
Gp. Note that we use the terminology cell in this case (rather than simplex) due to their more general
shape (polygons). Likewise, the dual lattice constitutes a cell complex. In a n-d domain, p-dimensional
cells of the barycentric dual lattice are in a bijective correspondence with (n — p)-simplices of the primal
lattice. i.e., they form a isomorphism {6,} = {o,—,}. As discussed in detail elsewhere [5,14], the
primal and dual lattices exhibit different types of orientation: the primal lattice is typically chosen as
having inner orientation and the dual lattice as having outer orientation. These two types of orientation
exhibit different behavior under reflection, a distinction akin to that between proper (or polar) tensors
and pseudo (or axial) tensors for example. As evident from Fig. 2, every cell of both the primal and
barycentric dual lattices can be assembled from a set of simplices of the barycentric decomposition
lattice. In addition, the barycentric decomposition lattice is simplicial even though the barycentric dual
lattice is not.

3.2. Localization of Degrees-of-Freedom

A differential p-form o can be thought of as a p-dimensional oriented density so that its integral over
each oriented p-cell (simplex) o, of the (simplicial) lattice written as

/(, a® (5)

P

is well defined and yields a scalar value as a result. Differential forms thus provide precise assignment
rules, according to their degree, for the localization of the degree-of-freedom (DoF) of the lattice field
theory: a p-form is always assigned to a p-cell. In particular, the DoF's of the 2-forms G in (3) and
F in (4) are associated with face elements of the lattice, whereas the DoFs of the potential A are
associated with edges thereof. However, because these forms have different types of orientations: F
and A are ‘ordinary’ differential forms with inner orientation whereas G (as well as *J) is a ‘twisted’
differential form with outer-orientation [5,14], they are associated with either the primal (F' and A) or
the dual lattice (G and *J) discussed above. The connection between fields on the two (primal and
dual) lattices is effected through Hodge dualities such as F' = *G. The need for a primal/dual lattice
construction can be also motivated on purely combinatorial [16,17] or computational [18,19] grounds
as well. In particular, the importance of a dual lattice for a proper definition of the discrete Hodge
star operator in the context of field theories and for correctly reproducing topological invariants in the
discrete setting was first recognized in [16].

It should also be pointed out that the quantities expressed by (5) are the true measurable quantities
of the theory (i.e., the fields themselves are not) [14]. Clearly, for the notion of ‘measurement’ to be a
reliable one, the values of the integrals (5) should be continuous with respect to small perturbations on
op. Because of this, in the 3-d case for example, O-forms (evaluated at a point) exhibit full continuity
(associated to scalar potential fields), 1-forms exhibit tangential continuity (associated to “intensity”
vector fields), 2-forms exhibit surface normal continuity (associated to “flux” vector fields), and 3-forms
may exhibit stepwise discontinuities (e.g., scalar charge densities).
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4. EXTERIOR DERIVATIVE ON A LATTICE

In order to proceed further, it is necessary first to translate the two operators d and *, that appear
in (3) and (4), to the lattice setting. The lattice translation of the discrete exterior derivative d is based
on the Generalized Stokes’ Theorem (GST) [5,15]. As its name suggests, the GST encompasses the
Fundamental Theorem of Calculus in 1-d, Stokes’ Theorem in 2-d, and Gauss’ Theorem in 3-d, and is
valid for any number of dimensions. The GST writes as

da@—n::/" =) (6)
Tp Op

for p=1, 2, .... Here, 7, is an arbitrary p-dimensional domain, d the boundary operator, and alP~1) o
generic (p — 1)-form. The operator O carries its ordinary meaning [20] as illustrated in Fig. 3, and on a
lattice it maps any p-simplex to the set of (p — 1)-simplices comprising its geometrical boundary. Also
illustrated in Fig. 3, one always has 8% = 0 (i.e., the ‘boundary of a boundary is zero’ [21]).

A

Figure 3. Boundary operator acting on a 2-simplex (oriented triangular cell) and its boundary (three
oriented edges). Note the inherited orientation of the boundary 1-simplices. The nilpotency 9% = 0 is
also illustrated, as the boundary of the union of the 1-simplices shown (a closed loop) is null.

In the continuum, there are no restrictions on the choice of the region of integration ,. On the
lattice, the GST remains valid except for the fact that v, now necessarily comprises the union of some
number of p-simplices. For example, for p = 2, v, corresponds to a union of two-dimensional facets
(plaquettes). For any two o, ; and o, j with i, j =1, ..., Np,, where N, in the number of p-simplices on

the lattice, one has
/ P _|_/ aP) :/ a®), (7)
o Op.j (op,i+0op,5)

24 2%
so that one can represent +, as the formal sum (‘chain’), v, = Y, a;0,;, with some integer coefficients
a;. This means that, for an arbitrary chain +,, the evaluation of the integral

w_/ ) _ ./ ) (8)
o «o a; o
/Y (Ziaiap,i) zl: Op,i

p
hinges upon the knowledge of the integrals
wg/(m (9)

for all p-simplices o, ; that comprise the lattice. For some p-form a'?) | we call (9) the contractions of

o'P) with the lattice elements [5]. Such contractions represent the discrete degrees of freedom of the
lattice field theory.

Going back to the GST, since 0, is a (p — 1)-dimensional object on the lattice, we can represent
it in terms of (p — 1)-simplices. In other words, for any ~,;, we have

8’}’1,,1‘ =0 <Z aiam) = Z a; 80':,”‘ = Z a; Z Ci(f)op—lyj (10)
i i i j
with ¢ =1, ..., N, and where Cg’ ) are elements of the incidence operators (matrices) [22], which map

any p-simplex oy, j to the (p—1)-simplices that comprise its boundary. The entries Ci(?) assume 0, +1, —1
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values, with the sign depending on the relative orientation chosen for the individual simplices ¢ and j.
This is a consequence of the fact that C(?) represent a purely topological operator (as d) that does not

depend on the background metric. On a 4-d lattice, the set of four incidence operators p = 1, , 4
fully encode the connectivity information among the elements of the lattice. It should be clear that an

)

analogous set of operators exists for the dual lattice, which are denoted here as CN’Z(’; .
Combining (6) and (10), we obtain

da®1) :/ a1 :/ a1 — CZ,(I?)/ P (11)
/a i Oop i (ZjC'i(f)ap,l,j) Ej: J Op—1,j

D,

or, in terms of the shorthand notation introduced in (9),
(da(pfl)) (de) (p Z C’(p (12)

This last equation is the desired discrete representation of d on a lattice, fully encoded by the incidence
operators. Note that, from (6), we have

/ a2 / daP-2 — / ae=1) g, (13)
p Op ?vp

where the last equality follows directly from 9% = 0. In other words, since (6) implies that & and d
are formal adjoint operators, the identity 9> = 0 implies d2> = 0. In turn, this implies the structural

constraint? 1
Z cre® — (14)

and an equivalent one on the dual lattice, i.e.,

ZCPH =0 (15)

5. HODGE STAR OPERATOR ON A LATTICE

5.1. Interpolants for Discrete Differential Forms

Before proceeding with the transcription of the discrete Hodge star operator to a simplicial lattice, we

need first to obtain interpolants of discrete differential forms. Given the value of agp ) in (9) associated

with the set of all p-simplices that form a lattice, ¢ = 1, ..., IV, such interpolants would provide

(interpolate) the value of a®) elsewhere in the ambient spacetime spanned by the lattice. For a 0-form,
barycentric coordinates themselves constitute the suitable interpolant, that is

V) = 3" ol xi(u), (16)

where \;(u) is simply the value of ); at the point u and o(?) is an arbitrary O-form. From the

properties of barycentric coordinates, it is trivial to verify that this interpolation recovers the nodal

values (contractions), that is, a®(u = og;) = az(p ). Between nodes, the interpolation is linear. As

noted before, O-forms can be associated to continuous scalar functions and this interpolation preserves
such property.

For differential forms of degree p, we wish to determine suitable interpolants that generalize the
concept of barycentric coordinates from 0-d objects (points) to p-d objects in such a way that a p-
dimensional object can be likewise represented in terms of lattice p-simplices. Note that barycentric

¥ This constraint generalizes, on the lattice, the identities V x V = 0 and V- Vx = 0 of vector calculus to any number of dimensions
and distilled from the metric.
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coordinates can represent any point u inside, say, a 2-simplex [u1, ug, ug] in terms of its boundary nodes,
that is

u = A (uw)u; + Aa(uw)ug + Az(u)us, (17)
which for a O-form o(?) evaluates as
al® (u) = /\1(u)a(0) (u1) + )\g(u)a(o) (ug) + Ag(u)a(o)(u;;), (18)

and recovers (16) for any point w within the 2-simplex [u1, ug, us]. In (18), we used the fact that
for a 0-form the domain of integration og; in (9) is simply a point (node), and hence the integration
(contraction) reduces to the evaluation of a function (0-form) at such point. This allows us to write
a0 (uy) = 04(10) using the notation (9). Furthermore, for reasons that will be clear later on, we denote
(0)

Xi =w; ', 1=1,2,3 so that (18) can also be written as

a0 = ago)wgo) + aéo)wéo) + aéo)wz(,,o). (19)

By letting u to be anywhere on the lattice domain, not necessarily restricted to within a given simplex,
the above equation generalizes to
a® = Z ozl(-o)wgo) (20)
i

where the index ¢ in this sum runs through all nodes of the lattice, i = 1, ..., Nyg. We will next find
a suitable generalization of the above equations for p-dimensional objects, representing lines in terms
of the edges of the lattice, surfaces in terms of the faces of the lattice, and so on. This generalization
was first obtained in [23] and a succinct geometric derivation was provided in [24]. For concreteness,
let us examine next the case of a line in 2-d in more detail and from a slightly different perspective
here. In Fig. 4, we depict a straight line segment inside a 2-simplex with a point © marked on it. The
location of u can be uniquely determined by the value of two of its barycentric coordinates, say A1 and
A2, as indicated. Together with the opposite node ug, the two end points of this segment, denoted as
us and uy comprise an oriented triangle, indicated by the area in red. Assuming that the 2-simplex
[u1, u2, us] has unit area, it is a simple exercise to show that the area of the triangle [us, uy, ug] is
equal to A1(us)A2(uf) — A1(ug)A2(us). This area corresponds to the coefficient of the segment [ug, uy]
expressed in terms of the edge [uj, ug]. Note that this ‘area’ can assume negative values depending on
the relative orientation of the segment versus the edge. By repeating this procedure w.r.t to the other
two edges, one can then express the segment [ug, uy] in terms of the three edges of this 2-simplex as

[us, ug] = (AM(us)Aa(ur) — Ao(us) A1 (uy)) [ur, u] + (A2(us)As(ug) — Az(us)A2(uy)) [uz, us]
+ (As(us) A1 (uyp) — M(us)As(uy)) [us, ul. (21)

il

Us us

Figure 4. Straight line segment [u,, us] within 2- Figure 5. Infinitesimal segment d¢ within 2-
simplex [uj, ug, us]. Any point along the segment  simplex [u, ug, us].

can be uniquely specific by the barycentric

coordinates A1 and Aj.
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which is the desired generalization of (17) to 1-d objects, where the coefficients in (21) play the role
analogous to barycentric coordinates in (17). In order to generalize for the case of non-straight line
segments, we consider an oriented infinitesimal segment d¢ as depicted in Fig. 5. In this case, the two
end points of the segment can be expressed in terms of their barycentric coordinates as (A1, A2) and
(A1 +dA1, A2 +dA2). They determine the triangle indicated in red in Fig. 5 (with an infinitesimal acute
angle). Assuming unit area for the 2-simplex [u1, ug, us], it is again easy to show that the infinitesimal

area of such triangle is
A1 ()\2 + d)\g) — ()\1 + d)\l) Ay = AdAg — )\Qd)\l, (22)

which represents the coefficient of such differential segment in terms of the edge [u;, us]. Repeating this
procedure for the other two edges and combining, one has

df = (/\1d)\2 — )\gd/\l) [ul, UQ] =+ (AQdAg — )\3d>\2) [UQ, U3] + (/\3d)\1 — )\1d)\3) [U3, ul]. (23)
Integration of (23) along a path C' yields

/ dé = [ul,uQ] / (Ald)\g — )\Qd)\l) + [U,Q,u?,]/ ()\2(21)\3 — /\3d)\2) + [U3,'LL1]/ ()\3(1/\1 — Ald)\g) . (24)
C C C C

which generalizes (17) from a point to a path. By numbering at this point the edges [u, us],

[u1, ugl, [u1, us] as 1, 2, and 3 respectively, and using the definitions (AjdAa — AadAi) = w§1),

(AdAg — AodA) = wél), and (A1dAg — Aad)y) = w:())l) then, analogously to the passage (17) from (18),

the relation (24) can be applied a 1-form o) to yield

[0 =a [wf?+af) [ wf+af [ uf, (25)
C C C C

where we also used the definition in (9). Since (25) is valid for any C, it immediately follows that,
within the 2-simplex [ui, ua, ug], we have

all) = agl)wgl) + agl)wél) + aél)wgl). (26)

where it seen that (26) is the 1-form counterpart to the expression for 0-forms obtained in (19). Further,
by allowing C' to be anywhere on the lattice, and not necessarily within a single 2-simplex [u1, ug, us],

(26) generalizes to
Oé(l) — Zagl)wz(l) (27)

as in (20), where now the index 4 of this sum runs through all edges of the lattice, i =1, ..., Nj.
For higher dimensional objects, similar expansions can be obtained for differential forms of any
degree, that is

olP) = Zagp)wgp). (28)

where the sum runs over all faces, volumes or hypervolumes for p = 2, 3, 4 respectively, comprising the
lattice. Using steps very analogous to the ones for the p = 0 and p = 1 cases examined above, the

expression for the w® interpolant function associated to a p-simplex Opi = [u1,u2,...,upq1] can be
found as [23]
p+1
w? oy = w? = (p+ DI (~1)F Ak dAem1dAgrr - gt (29)
k=1

Collectively, the interpolating functions w(® are denoted as Whitney forms. As noted in [5], it is a
simple exercise to verify that
/ w?” = 3 (30)

P,J

with d;; being the Kronecker delta, and that the following hierarchical construction holds

w® [op,i] = dw(p_l)[('“)ap,i]. (31)

(2
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It should also be stressed that expression (29) is metric-free and therefore invariant regardless of how the
p-simplex oy, ; is oriented w.r.t. the local spatial and time coordinate axis (metric signature). However,
this is not true of vector representations (proxies) thereof, which are metric-dependent and hence depend
on the relative orientation of the simplicial element w.r.t. to the time axis. In the Riemannian case and
using the parlance of finite elements, the vector representations of Whitney 1-forms and 2-forms recover
the so-called edge and face vector basis functions respectively, see e.g., [25,27]. On the other hand,
in the Lorentzian case, the vector representation of a Whitney 1-form is exemplified for the (1 + 1)-d
Minkowski spacetime in [28].

Whitney forms can be used to expand fields defined on the primal lattice or on the dual lattice.
In the former case, (28) can be used directly since the primal lattice is simplicial. In the latter case,
(28) can be used first on the (barycentric) decomposition lattice (which is also simplicial as seen before)
and a consequent expansion on the dual lattice can be built by assembling elements of the dual lattice
from the Whitney elements of the decomposition lattice, as suggested in [13]. A more explicit example
of a Whitney complex constructed on barycentric dual lattices is provided in [29].

5.2. Discrete Action and Discrete Hodge Representations

The source-free action from (1) is

1 1
S:/ F/\G:/ F A xF. (32)
2 04 2 04
Using an expansion for F'is terms of Whitney forms, that is
F=Y" Fu?, (33)
i

where the index runs over all the faces of the lattice, the source-free electromagnetic action on the lattice
assumes an expected quadratic form in terms of the degrees of freedom of the theory

1
S=3Y Y EMPF, (34)
i

where we can immediately identify
[*]Z(jz) = /94 wZ@) A *w](?) (35)

as a discrete realization of the Hodge star operator [6,25] on a 4-d simplicial lattice with Minkowski
spacetime background. Note that, from (32) and (35), one can equivalently write

2
Gi=Y P (36)
J
so that the source-free action on the lattice can be also expressed as
1
§=32 BGi (37)
1

where again the index runs over all the faces of the lattice.

5.3. Hodge and Poincaré Dualities

Equation (36) establishes a Hodge duality between the DoFs of F' = G at the discrete level. As
noted before, this duality also establishes a connection between primal and dual lattice quantities.
Even without reference to a field theory, a notion of duality is already present because of the bijective
correspondence between p-simplices of the primal lattice and (n—p)-cells of the dual lattice, as formalized
by the Poincaré duality theorem [26].
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6. LATTICE FIELD EQUATIONS

6.1. 4-d Theory
Application of the counterpart of (11) in the dual lattice to the relation dG = %7 yields

[ ac=yc [ o= [ @) (33)
03, j 02,5 03,5

for all 3-cells i on the dual lattice. By using again the shorthand notation introduced (9) and the
discrete Hodge duality (36), one obtains

> ¢y (Z[*]ﬁ)Fk> = (xJ); (39)

j k
Similarly, application of (11) to dF' = 0 yields the constraint
3
ScE =0 (40)

)

for all 3-simplices i on the primal lattice. From F' = dA, one has

2
F=Yc24 (41)
J
and hence dF' = 0 holds exactly from (14). In addition, (39) becomes

S [ (zc,i?uz)
J

k !
Again, this equation is verified for all 3-cells 73 ; of the dual lattice. As noted before, the DoF's of the
potential A are associated with edges (1-simplices) oy ; of the primal lattice, which are in 1 : 1 pairing
with o 3,

Either (39) together with constraint (40), or (42) can be utilized to solve for the degrees of freedom
of the lattice theory. Some important observation are in order. First, at this level of description, we have
a boundary value problem in the flat Minkowski 4-d spacetime where time and spatial variable are in an
equal setting. The main difficulty associated with such 4-d spacetime formulation is that the Minkowski
metric is indefinite (Lorentzian manifold). As a result, the discrete Hodge star operator in (35) and
conspicuously present on (39) and (42) corresponds to an indefinite matrix. In particular, if proper care
is not exercised in the construction of the 4-d spacetime lattice, many elements with (near) zero measure
may ensue. This can cause numerical problems related to division by zero and also makes it difficult
to enforce causality constraints, as discussed below. Indeed, the coordination number in a indefinite-
metric lattice (i.e., number of lattice O-simplices within some small distance from any given reference
0-simplex) can be very large and increases with the number of lattice elements, since it will include
all 0-simplices within a small distance from the light-cone defined by the reference O-simplex. This
feature is in sharp contrast to the case of a positive-definite metric (Riemannian manifold), which yields
a small coordination number. In a number of contexts, a Wick rotation is performed to alleviate the
difficulties associated with an indefinite metric [3, 30, 31]. The Wick rotation corresponds to an analytical
continuation to imaginary time, ¢ — it to transform the Lorentzian metric ds? = da®+4dy?+dz? — (cdt)?
into a positive metric in a 4-d Euclidean space ds? = da? + dy? + dz? + (icdr)?. However, for this
procedure to be useful in the present context, one needs to analytically continue back to real time.
This becomes difficult to achieve on numerical (not analytical) results. Also, a Wick rotation does not
necessarily facilitate causality preservation on the 4-d lattice.

= (xJ)i (42)

6.2. Causality Constraints on the 4-d Lattice Structure

Causality conditions put constraints on the spacetime mesh that are even stronger than simply avoiding
elements with (near) zero measure. Such constraints have been examined before in the context of “causal
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dynamic triangulations” [32,33], for example. In short, they require not only that any edge should be
either space-like (positive length) or time-like (negative length), but also that subsets of spatial edges
should comprise Cauchy “surfaces” (volumes in 4-d) with positive definite metric in such a way that
the 4-d spacetime lattice can be generated from an extrusion of such Cauchy “surfaces” along the time
direction. The resulting 4-d lattice in this case has a layered structure with a well-defined causality cone
(“light-cone”) at every node. Together, the set of such causality cones comprise a globally-consistent
set where non-causal features such as closed loops consisting of time-like edges do not occur.

A layered lattice structure can be relaxed by employing so-called “locally-causal dynamical
triangulations” where more general connectivity rules between space-like and time-like edges are
employed to effect a well-defined causal cone at every lattice node. In short, this is achieved by
making sure that, at every node, there are two and only two “opposite” directions containing time-
like edges and separated by a region containing only space-like edges [34]. This is illustrated in Fig. 6.
Other approaches to construct causality-preserving spacetime lattices also exist, based on generalized
advancing-front algorithms. These are discussed in detail in [35, 36].

(@ (b) (c) (d

Figure 6. Node-to-edge connectivity examples on a spacetime lattice. Red segments indicate time-
like edges and gray segments indicated space-like edges. A simple 2-d arrangement is displayed for
visualization purposes, but the same basic rules apply in 4-d. A connectivity such as (a) is not compatible
with causality since it does not support two separate light cones emanating from the node (i.e., the
definition of a past-to-future chronology is not possible on that node). Cases (b), (c), and (d) are
permissible since two non-overlapping light cones can be well-defined, as indicated by the dashed lines.
Of course, this is only a necessary condition since all light cones need also to be globally coordinated
across nodes.

6.3. (3 + 1)-d Theory

In many practical applications, relativistic effects are not important and it is more convenient to, instead
of considering the more general 4-d problem, consider the (3 + 1)-d initial-boundary value problem of
determining the time evolution of the fields across spatial slices of fixed geometry. In such 3+ 1 setting,
one can decompose the F' and G 2-forms as [9, 37]

F = FEdt+ B (43)

G =D— Hdt (44)
and the current-source density as

xJ =—Jdt+p (45)

where E and H are the electric intensity and magnetic intensity 1-forms; D and B are the electric
flux and magnetic flux 2-forms; J is the electric current density 2-form; p is the electric charge density
3-form [6]. The decomposition (43) is illustrated in Fig. 7. Substituting (43), (44), and (45) in (3)
and (4), we obtain

0

H =D 4
d 5D+ (46)
dE——QB (47)
T ot
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Figure 7. Representation of the Faraday 2-form F', the associated 2-form Fdt oriented parallel to the
time axis, and the 2-form B located within the spatial slice. As indicated, the “projection” of Edt onto
the spatial slice corresponds to the 1-form E. For the purposes of visualization, the 3-d spatial slice is
represented as 2-d instead. These two “projections” can be utilized once the 4-d lattice elements are
properly aligned w.r.t. the time and spatial-slice directions.

supplemented by the constitutive relations D = x.E and H = %,-1 B now involving two Hodge star
operators in 3-d space. In the above, ds stands for the 3-d spatial exterior derivative related to the 4-d
spacetime exterior derivative through

A0) = () + 0 () (19)

Note that both (47) and (46) are metric-free. The subscripts € and p attached to x. and x,-1 indicate
that these operators can also incorporate background material properties (we assume dispersionless
media for simplicity).

In this case, the 4-d lattice can be simply created from an extrusion, along the time coordinate,
of the 3-d lattice representing the (fixed) spatial-slice geometry. One can then either “degeometrize”
time [5,6] and treat ¢ simply as a parameter along the direction of extrusion or define generalized
Whitney forms on the prismatic elements of the resulting spacetime lattice. These two choices will be
considered separately next.

6.3.1. (3+1)-d Theory with Degeometrized Time

In the first scenario, using Whitney forms on the 3-d spatial lattice, we can write the following expansions

B(t.v) =Y Eit)w () (49)
B(t.v) = Y Bi(thw” (v) (50)

where v represents a generic point within the 3-d spatial slice, and the indices ¢ run over all primal
lattice edges and faces for E and B, respectively. In source-free media, the electromagnetic Hamiltonian
is [6]

H= | (EAxE+%,-1BAB) (51)
Q3

Using (49) and (50), the Hamiltonian on a lattice becomes
1 2
M= 3 By Bi(t) + 3037 Bilt) )iy By (1) (52)
i i
where the two symmetric positive definite matrices

] ® = /Q WD) AxewO(w) (53)
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correspond to the discretization of x. and *,-1, respectively [5,38,39]. The indices in (53) and (54) run
over the edges and faces of the (spatial-slice) primal lattice, respectively. Discretization of (46) and (47)
follows the same basic tenets discussed before in the 4-d case and leads to [5, 6, 25]

0 1
~5 B0 =22 CF Bi() (55)
J
where the index 7 runs over all faces of the primal lattice and

0
Dbl 50 = DO S k] Bi(t) (56)
J J k

where the index ¢ runs over all faces of the dual lattice. The superscript s is used on the (spatial-slice)
incidence operators in (55) and (56) to distinguish them from the incidence operators defined previously
in (10) for the 4-d spacetime lattice. We stress again that in the expansions (49) and (50) time is fully
degeometrized and a number of different time-discretization schemes can be subsequently used for the
semi-discrete equations (55) and (56).

6.3.2. Geometric (3 + 1)-d Theory

Alternatively, one can still treat the time variable from a geometrical standpoint by defining prismatic
cells in 4-d, with cross-sections within the spatial slices comprised by the volume simplices of the spatial
3-d lattice. Recall that A is a 1-form in 4-d spacetime. Consequently,

where the sum runs over the spacetime lattice edges. Similar to (43) and (44), one can decompose A in
the (34 1)-d case as [9]
A=A, — ¢dt (58)

where the spatial component A, corresponds to the magnetic vector potential and ¢ to the electric
scalar potential. Similarly, expansion (57) can be likewise decomposed in (3 + 1)-d as

Ay =3 (Z RO OEDY ¢?wn<t>w§°’<v>dt> , (59)

where the index 7 now runs over all edges and nodes of the (simplicial) 3-d lattice comprising the spatial
slice. The functions 7, (t) and m,(t) are pulse-shaped and triangular-shaped functions, respectively, as
illustrated in Fig. 8, and the index n enumerates successive discrete time instants. The factors 7,(t)
and 7' (t)dt correspond to Whitney 0- and 1-forms in 1-d (i.e., along temporal direction), respectively.
Next, by using F' = dA and (43), the resulting expansions for E and B become

B(t.v) = 33 Bimn(t)e) () (60)

n-1 n n+1

Ti(t)

T(t)

>

Figure 8. Time-dependent factors 7, (t) and 7, (f) used in the expansion of the four-vector potential

A(v,t).
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B(t,v) = 3. Bt (v) (61)

where Wn(t)wfl)(y) and Tn(t)w?)(l/) can be recognized as “generalized” Whitney forms associated with
the prismatic elements of such (extruded) spacetime lattice.

The reason for the different expansions w.r.t. the time variable in F and B can be traced down
to (43), where it is seen that E is associated with the temporal components of the 4-d exterior
derivative (48). Consequently, the degree of continuity of E along the time direction is one less than
that of B. This can also be seen directly from (47). Note also that, as depicted in Fig. 8, the midpoints
along t of 7, (t) and 7,,(t) do not coincide: 7,(t) is centered at integer indices whereas m,(t) is centered at
half-integer indices. Such staggering of the E and B field expansions in time makes the above expansions
compatible with (47). In the context of numerical methods such as the finite-difference time-domain
(FDTD) [40-42], it provides a fundamental justification for the use of staggered discretizations such as
leap-frog time integration.

7. CONCLUSIONS

We described a lattice formulation for 4-d Maxwell’s equations based on the representation of field and
causative source quantities as differential forms of various degrees. The degrees of freedom of the theory
are localized on specific types of lattice elements according to the kind of differential form they are
associated with. Primal and dual lattices are employed to accommodate the need to represent field
quantities with different types of orientation (inner and outer). Whitney forms are used to construct
discrete Hodge operators and define an isomorphism between the primal lattice and the barycentric
dual lattice. Lattice field theories in (3 + 1)-d are considered as special cases of the 4-d theory following
a specific choice of alignment for the lattice elements.
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