Vol. 145
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-03-11
Complex Resonances of a Rectangular Patch in a Multilayered Medium: a New Accurate and Efficient Analytical Technique
By
Progress In Electromagnetics Research, Vol. 145, 123-132, 2014
Abstract
A new analytical technique to study the complex resonances of a rectangular patch in a multilayered medium is introduced. The problem is formulated as an electric field integral equation (EFIE) in the spectral domain and discretized by means of products of Chebyshev polynomials of first and second kind multiplied by their orthogonal weights in a Galerkin's scheme. The method is fast convergent, i.e., few expansion functions are needed to achieve accurate results, but leads to the numerical evaluation of infinite double integrals of oscillating and slowly decaying functions. To overcome this problem, suitable half-space contributions are pulled out of the kernels of such integrals in order to obtain exponentially decaying integrands. Moreover, the slowly converging integrals of the extracted contributions are expressed as combinations of quickly converging integrals by means of algebraic manipulations and an appropriate integration procedure in the complex plane.
Citation
Mario Lucido, "Complex Resonances of a Rectangular Patch in a Multilayered Medium: a New Accurate and Efficient Analytical Technique," Progress In Electromagnetics Research, Vol. 145, 123-132, 2014.
doi:10.2528/PIER14020204
References

1. Carver, K. R. and J. W. Mink, "Microstrip antenna technology," IEEE Trans. Antennas Propag., Vol. 29, No. 1, 2-24, Jan. 1981.

2. James, J. R. and P. S. Hall, Handbook of Microstrip Antennas, Stevenage, Peregrinus, UK, 1989.

3. Michalski, K. A. and D. Zheng, "Analysis of microstrip resonators of arbitrary shape," IEEE Trans. Microw. Theory Tech., Vol. 40, No. 1, 112-119, Jan. 1992.

4. Gupta, K. C. and M. D. Abouzahra (eds.), Analysis and Design of Planar Microwave Components, IEEE Press, Piscataway, NJ, 1994.

5. Bogosanovich, M., "Microstrip patch sensor for measurement of the permittivity of homogeneous dielectric materials," IEEE Trans. Instrum. Meas., Vol. 49, No. 5, 1144-1148, Oct. 2000.

6. Zucchelli, A., M. Chimenti, and E. Bozzi, "Application of a coaxial-fed patch to microwave nondestructive porosity measurements in low-loss dielectrics," Progress In Electromagnetics Research M, Vol. 5, 1-14, 2008.

7. Bahl, J., P. Bahartia, and S. S. Stuchly, "Design of microstrip antennas covered with a dielectric layer," IEEE Trans. Antennas Propag., Vol. 30, No. 2, 314-318, Mar. 1982.

8. Bhattacharayya, A. and T. Tralman, "Effects of dielectric superstrate on patch antennas," Electron. Lett., Vol. 24, No. 6, 356-358, 1988.

9. Harokopus, W. P. and P. B. Katehi, "Characterization of microstrip discontinuities on multilayer dielectric substrates including radiation losses," IEEE Trans. Microw. Theory Tech., Vol. 37, No. 12, 2058-2066, Dec. 1989.

10. Schwab, W. and W. Menzel, "On the design of planar microwave components using multilayer structures," IEEE Trans. Microw. Theory Tech., Vol. 40, No. 1, 67-72, Jan. 11992.

11. Afzalzadeh, R. and R. N. Karekar, "X-band directive single microstrip patch antenna using dielectric parasite," Electron. Lett., Vol. 28, No. 1, 17-19, 1992.

12. Yeung, E. K. L., J. C. Beal, and Y. M. M. Antar, "Multilayer microstrip structure analysis with matched load simulation," IEEE Trans. Microw. Theory Tech., Vol. 43, No. 1, 143-149, Jan. 1995.

13. Tsai, M.-J., F. De Flaviis, O. Fordham, and N. G. Alexopoulos, "Modeling planar arbitrarily shaped microstrip elements in multilayered media," IEEE Trans. Microw. Theory Tech., Vol. 45, No. 3, 330-337, Mar. 1997.

14. Losada, V., R. R. Boix, and M. Horno, "Resonant modes of circular microstrip patches in multilayered substrates," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 4, 488-498, Apr. 1999.

15. Ling, F., D. Jiao, and J.-M. Jin, "Efficient electromagnetic modeling of microstrip structures in multilayer media," EEE Trans. Microw. Theory Tech., Vol. 47, No. 9, 1810-1818, Sep. 1999.

16. Xia, L., C.-F. Wang, L.-W. Li, P.-S. Kooi, and M.-S. Leong, "Fast characterization of microstrip antenna resonance in multilayered media using interpolation/extrapolation methods," Microw. Opt. Technol. Lett., Vol. 28, No. 5, 342-346, Mar. 2001.

17. Sharma, A. and G. Singh, "Design of single pin shorted three-dielectric-layered substrates rectangular patch microstrip antenna for communication systems," Progress In Electromagnetics Research Letters, Vol. 2, 157-165, 2008.

18. Li, Y. and N. Bowler, "Resonant frequency of a rectangular patch sensor covered with multilayered dielectric structures," IEEE Trans. Antennas Propag., Vol. 58, No. 6, 1883-1889, Jun. 2010.

19. Aouabdia, N., N. E. Belhadj-Tahar, G. Alquie, and F. Benabdelaziz, "Theoretical and experimental evaluation of superstrate e®ect on rectangular patch resonator parameters," Progress In Electromagnetics Research B, Vol. 32, 129-147, 2011.

20. Taflove, A., Computional Electromagentics: The Finite-difference Time-domain Method, Artech House, Norwood, MA, 1995.

21. Jin, J. M., The Finite Element Method in Electromagnetics, Wiley, New York, 1993.

22. Harrington, R. F., Field Computation in Electromagnetics, Wiley, New York, 1993.

23. Silvester, P. and P. Benedek, "Equivalent capacitance of microstrip open circuits," IEEE Trans. Microw. Theory Tech., Vol. 20, No. 8, 511-516, Aug. 1972.

24. Kompa, G. and R. Mehran, "Planar waveguide model for calculating microstrip components," Electron. Lett., Vol. 11, No. 19, 459-460, 1975.

25. Eswaran, K., "On the solutions of a class of dual integral equations occurring in diffraction problems," Proceedings of the Royal Society of London, Series A, Vol. 429, No. 1877, 399-427, 1990.

26. Bagby, J. S., C.-H. Lee, Y. Yuan, and D. P. Nyquist, "Entire-domain basis MOM analysis of coupled microstrip transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 40, No. 1, 49-57, Jan. 1992.

27. Veliev, E. I. and V. V. Veremey, "Numerical-analytical approach for the solution to the wave scattering by polygonal cylinders and flat strip structures," Analytical and Numerical Methods in Electromagnetic Wave Theory, M. Hashimoto, M. Idemen, and O. A. Tretyakov (eds.), Science House, Tokyo, 1993.

28. Park, S. and C. A. Balanis, "Dispersion characteristics of open microstrip lines using closed-form asymptotic extraction," IEEE Trans. Microw. Theory Tech., Vol. 45, No. 3, 458-460, Mar. 1997.

29. Park, S. and C. A. Balanis, "Closed-form asymptotic extraction method for coupled microstrip lines," IEEE Microw. Guid. Wave Lett., Vol. 7, No. 3, 84-86, Mar. 1997.

30. Amari, S., R. Vahldieck, and J. Bornemann, "Using selective asymptotics to accelerate dispersion analysis of microstrip lines," IEEE Trans. Microw. Theory Tech., Vol. 46, No. 7, 1024-1027, Jul. 1998.

31. Tsalamengas, J. L., "Rapidly converging direct singular integral-equation techniques in the analysis of open microstrip lines on layered substrates," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 3, 555-559, Mar. 2001.

32. Lucido, M., G. Panariello, and F. Schettino, "Analysis of the electromagnetic scattering by perfectly conducting convex polygonal cylinders," IEEE Trans. Antennas Propag., Vol. 54, No. 4, 1223-1231, Apr. 2006.

33. Lucido, M., G. Panariello, and F. Schettino, "Electromagnetic scattering by multiple perfectly conducting arbitrary polygonal cylinders," IEEE Trans. Antennas Propag., Vol. 56, No. 2, 425-436, Feb. 2008.

34. Lucido, M., G. Panariello, and F. Schettino, "TE scattering by arbitrarily connected conducting strips," IEEE Trans. Antennas Propag., Vol. 57, No. 7, 2212-2216, Jul. 2009.

35. Lucido, M., G. Panariello, and F. Schettino, "Scattering by polygonal cross-section dielectric cylinders at oblique incidence," IEEE Trans. Antennas Propag., Vol. 58, No. 2, 540-551, Feb. 2010.

36. Coluccini, G., M. Lucido, and G. Panariello, "TM scattering by perfectly conducting polygonal cross-section cylinders: A new surface current density expansion retaining up to the second-order edge behavior," IEEE Trans. Antennas Propag., Vol. 60, No. 1, 407-412, Jan. 2012.

37. Lucido, M., "An analytical technique to fast evaluate mutual coupling integrals in spectral domain analysis of multilayered coplanar coupled striplines," Microw. Opt. Technol. Lett., Vol. 54, No. 4, 1035-1039, Apr. 2012.

38. Coluccini, G., M. Lucido, and G. Panariello, "Spectral domain analysis of open single and coupled microstrip lines with polygonal cross-section in bound and leaky regimes," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 2, 736-745, Feb. 2013.

39. Lucido, M., "An efficient evaluation of the self-contribution integrals in the spectral-domain analysis of multilayered striplines," EEE Antennas Wireless Propag. Lett., Vol. 12, 360-363, Mar. 2013.

40. Meixner, J., "The behaviour of electromagnetic fields at edges," IEEE Trans. Antennas Propag., Vol. 20, No. 4, 442-446, Jul. 1972.

41. Hongo, K. and H. Serizawa, "Diffraction of electromagnetic plane wave by rectangular plate and rectangular hole in the conducting plate," IEEE Trans. Antennas Propag., Vol. 47, No. 6, 1029-1041, Jun. 1999.

42. Coluccini, G. and M. Lucido, "A new high efficient analysis of the scattering by a perfectly conducting rectangular plate," IEEE Trans. Antennas Propag., Vol. 61, No. 5, 2615-2622, May 2013.

43. Chew, W. C. and Q. Liu, "Resonance frequency of a rectangular microstrip patch," IEEE Trans. Antennas Propag., Vol. 36, No. 8, 1045-1056, Aug. 1988.

44. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, New York, 1995.

45. Chew, W. C. and S. Y. Chen, "Response of a point source embedded in a layered medium," IEEE Antennas Wireless Propag. Lett., Vol. 2, No. 1, 254-258, 2003.

46. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Verlag Harri Deutsch, 1984.