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Complex Resonances of a Rectangular Patch in a Multilayered
Medium: A New Accurate and Efficient Analytical Technique

Mario Lucido*

Abstract—A new analytical technique to study the complex resonances of a rectangular patch in a
multilayered medium is introduced. The problem is formulated as an electric field integral equation
(EFIE) in the spectral domain and discretized by means of products of Chebyshev polynomials of
first and second kind multiplied by their orthogonal weights in a Galerkin’s scheme. The method
is fast convergent, i.e., few expansion functions are needed to achieve accurate results, but leads to
the numerical evaluation of infinite double integrals of oscillating and slowly decaying functions. To
overcome this problem, suitable half-space contributions are pulled out of the kernels of such integrals
in order to obtain exponentially decaying integrands. Moreover, the slowly converging integrals of
the extracted contributions are expressed as combinations of quickly converging integrals by means of
algebraic manipulations and an appropriate integration procedure in the complex plane.

1. INTRODUCTION

For several decades, the study of microwave antennas and resonators based on microstrip technology
has been an important issue. This can be explained by their conformability and minimized shape, low
weight and cost, and due to the high number of applications including, just for examples, mobile satellite
communications, direct broadcast satellite services and non-destructive testing sensors in permittivity
and porosity measurements [1–6].

Furthermore, the use of multilayered dielectric substrates allows to obtain many advantages as
evidenced by the many works devoted to this subject [7–19]. It has been verified that multilayered
dielectric substrates can be used to reduce the radiation losses by surface waves to enhance the
efficiency. On the other hand, a dielectric substrate placed on top of a microstrip antenna can
provide protection against environmental hazards and, appropriately located, can increase the gain
of the antenna. Moreover, multilayered microstrip circuits allow for more versatile designs and offer the
advantage of greater compactness.

What emerges from the literature devoted to analyze microstrip circuits and antennas in
multilayered media, is that full-wave methods [20–22], taking into account the effects of the
electromagnetic coupling, surface waves, and radiation loss, are more accurate than traditional quasi-
static methods [23] and equivalent waveguide models [24]. Moreover, the most preferred full-wave
techniques to analyze non-shielded structures are integral equation formulations, allowing to express
the fields as functions of unknowns on finite support, discretized by means of the variational method of
moments.

Among them, the method introduced in [14, 25–39] to analyse propagation, radiation and scattering
by polygonal cross-section cylinders and one-dimensional perfectly conducting plates (disks, annular
rings, . . .) in a homogeneous or a layered medium has been shown to be a very accurate and efficient
approach. The problem is formulated in terms of surface integral equations in the spectral domain
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and discretized by means of Galerkin’s method with analytically Fourier transformable orthonormal
expansion basis reconstructing the behaviour of the fields at the edges [40]. Moreover, suitable analytical
acceleration techniques to fast evaluate the obtained improper integrals of oscillating and slowly decaying
functions has been developed. Even if this method can be immediately extended to the analysis of
the radiation and the scattering by a perfectly conducting rectangular plate in a homogeneous or a
layered medium, the proposed acceleration techniques reveals to be not effective when applied to the
resulting infinite double integrals of oscillating and slowly decaying functions. In order to overcome
this problem, in [41] the range of integration has been subdivided into annular sectors and the region
external to the maximum sector divided into three subregions over which the generic integrand has been
approximated with a suitable asymptotic behaviour so to reduce the corresponding double integral to
a single one. Recently, a new technique, drastically outperforming the acceleration technique presented
in [41], has been introduced in [42]: a new quickly converging representation of the infinite double
integrals resulting from the analysis of the scattering by a rectangular plate in a homogeneous medium
has been obtained by means of a suitable integration procedure in the complex plane. Unfortunately,
in case of a multilayered medium, such technique cannot be immediately applied due to the oscillating
nature of the Green’s functions of the problem.

The aim of this paper is the introduction of a new accurate and efficient analytical technique to
study the complex resonances of a rectangular patch in a multilayered medium. The problem formulated
as an EFIE in the spectral domain is discretized by means of products of Chebyshev polynomials of first
and second kind multiplied by their orthogonal weights in a Galerkin’s scheme. In order to fast evaluate
the obtained infinite double integrals of oscillating and slowly decaying functions, suitable half-space
contributions are pulled out of the kernels of such integrals obtaining exponentially decaying integrands.
Moreover, the slowly converging integrals of the extracted contributions are expressed as combinations
of proper and fast converging improper integrals of non-oscillating and exponentially decaying functions
by means of suitable algebraic manipulations and using an appropriate integration procedure in the
complex plane generalizing the one proposed in [42].

In Sections 2 the formulation of the problem and the discretization of the integral equations are
presented. The new acceleration technique is illustrated in Section 3. Section 4 is devoted to show the
accuracy and the efficiency of the presented technique and the conclusions are summarized in Section 5.

2. FORMULATION AND SOLUTION OF THE PROBLEM

The geometry of the problem is sketched in Figure 1. A planar layered medium of L+1 homogeneous and
isotropic layers of dielectric permittivity εq = ε0εrq , magnetic permeability µq = µ0µrq and wave number
kq = ω

√
εqµq with q ∈ {1, . . . , L + 1} is represented, where ε0 and µ0 are the dielectric permittivity and

Figure 1. Geometry of the problem.
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the magnetic permeability of the vacuum and ω is the angular frequency. Moreover, a coordinate system
with the z axis orthogonal to the discontinuity surfaces is introduced, and at the interface z = −dq, a
perfectly conducting rectangular patch of dimensions 2a and 2b, with the sides parallel to the x and y
axes and the centre at the point x = y = 0, is located.

Resonant solutions can be obtained by imposing the transversal component of the electric field with
respect to the z axis to be vanishing on the patch’s surface, i.e., [43]

+∞∫

−∞

+∞∫

−∞
G̃

(q)
(kx, ky) · J̃ (kx, ky) e−j(kxx+kyy)dkxdky = 0 (1)

with |x| ≤ a and |y| ≤ b, where J̃(·) is the double Fourier transform with respect to the x and y axes of
the surface current density on the rectangular patch and [44, 45]
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The system of integral Equation (1) can be reduced to a symmetric matrix equation by means of
Galerkin’s method with products of Chebyshev polynomials of first and second kind multiplied by their
orthogonal weights, i.e., factorizing the behaviour of the surface current density at the edges [40], as
expansion functions. Therefore, the elements of the coefficient matrix are proportional to the following
double integrals

M (q)
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rs (kx, ky) ψ̃srn,h,m,k
(akx, bky) dkxdky (3)

with r, s ∈ {x, y} and n, h, m, k nonnegative integers, where
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is proportional to the Fourier transform of the generic expansion function, px = 1, py = 0, and Jν(·) is
the Bessel function of first kind and order ν. Moreover, the complex resonant frequencies of the problem
can be readily obtained by enforcing the determinant of the truncated coefficient matrix to be zero.

3. A NEW ACCELERATION TECHNIQUE TO EFFICIENTLY EVALUATE THE
ELEMENTS OF THE COEFFICIENTS MATRIX

As a first task, by means of the change of variables kx = ρcψ and ky = ρsψ, where cψ = cosψ and
sψ = sinψ, it is simple to rewrite (3) as follows
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Observing that [46]
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it can be concluded that the integrand of the integral in (5) is an oscillating function which decays
asymptotically as 1/ρ2. Therefore, the computation time rapidly increases with the accuracy required
for the solution.

In order to overcome this problem, a new acceleration technique is proposed here.
The expression in (2a) can be reduced to the following non-oscillating function by posing (εl, µl) =

(εq, µq) for l ∈ {1, . . . , q − 1} and (εl, µl) = (εq+1, µq+1) for l ∈ {q + 2, . . . , L + 1}, i.e., when only two
half-spaces are involved,
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It is simple to verify that the difference between the functions in (2a) and (7) is
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and the upper sign has to be taken for the TE case whilst the lower sign has to be taken for the TM
case.

Therefore, by rewriting the double integral in (5) as
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and remembering (6), it can be concluded that the integrand of the second double integral (integral of
the accelerated contribution) has an exponential asymptotic decay of the kind e−2ρ∆q/ρ2 where

∆q =

{
d2 − d1 for q = 1
min {dq − dq−1, dq+1 − dq} for q ∈ {2, . . . , L− 1}
dL − dL−1 for q = L

. (11)

On the other hand, as can be shown to follow, the slowly converging first double integral in (10)
(integral of the extracted contribution) can be rewritten as a combination of very quickly converging
integrals taking advantage of the non-oscillating nature of the kernel.

Firstly, by means of algebraic manipulations, the recurrence formula [46]
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where the choice of d > max{kq, kq+1} has been discussed in [42]. The first integral at the second
member of the previous formula is a proper integral. Moreover, supposing that acψ ≥ bsψ (analogous
considerations can be done for acψ < bsψ by reversing the role of the sides), the following alternative
expression for the second integral in (16) can be found by generalizing the integration procedure in the
complex plane detailed in [42]
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Iν(·) and Kν(·) are the modified Bessel functions of first and second kind and order ν respectively, Yν(·)
is the Bessel function of second kind and order ν, H

(1)
ν (·) = Jν(·) + jYν(·) is the Hankel function of first

kind and order ν, and <{·} denotes the real part of a complex number. Observing that [46]
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it is possible to conclude that the first integral at the second member of (17) is an improper integral
of a non-oscillating function which decays asymptotically as e−2aσcψ/σ2, while the last one is a proper
integral.

Therefore, the integral at the first member of (16) (and, then, the double integral in (15a)) has
been expressed as a combination of quickly converging integrals.

4. NUMERICAL RESULTS

The aim of this section is to show the accuracy and the efficiency of the presented technique in terms
of calculation time and storage requirement.

It is worth noting that more than 20 integrals per second can be computed by means of an adaptive
Gauss-Legendre cubature routine on a laptop equipped with an Intel Core 2 Duo CPU T9600 2.8 GHz,
3GB RAM, running Windows XP.

The overall number of matrix coefficients is 4N2M2, where N and M are the number of expansion
functions used along the x and y axes respectively for each component of the surface current density.
However, due to the properties detailed above, the number of integrals of the form M ′′(q)

rsn,h,m,k
, I

(q)
εn,h,m,k

and I
(q)
µn,h,m,k that has to be computed is respectively reduced to NM(2NM + 1), N+N−M+M−/16

and N+(N− + 2)M+(M− + 2)/16, where P± = P + 2 ± mod(P, 2) with P ∈ {N, M} and mod(·, ·) is
the modulus operation.

Moreover, few expansion functions are needed to achieve accurate results. It can be appreciated in
Table 1 where the complex resonant frequency of the square patch in a grounded one-layer dielectric
medium sketched in Figure 2(a) is shown as a function of the number of expansion functions used
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Table 1. Complex resonant frequency of the square patch in a grounded one-layer medium sketched
in Figure 2(a) for different numbers of basis functions used. 2a = 2b = 10 mm, εr1 = 1, εr2 = 1.046,
d2 − d1 = 0.98 mm.

N = M fr (GHz)

1 -

2 12.50867 + j0.416032

3 12.49978 + j0.441532

4 12.49636 + j0.441182

5 12.49576 + j0.441112

6 12.49522 + j0.441061

7 12.49491 + j0.441032

8 12.49474 + j0.441015

9 12.49463 + j0.441004

10 12.49456 + j0.440997

11 12.49451 + j0.440992

12 12.49447 + j0.440989

13 12.49445 + j0.440987

14 12.49444 + j0.440986

15 12.49444 + j0.440986

Table 2. Resonant frequencies of the square patch in a grounded two-layer dielectric medium sketched
in Figure 2(b). 2a = 2b = 10 mm, εr1 = 1, εr3 = 1.046, d3 − d2 = 0.98 mm.

εr2 d2 − d1 (mm)

Li et al. [18] This method

fr (GHz)
Deviation (%)

fr (GHz)
Deviation (%)

HFSS Meas. HFSS Meas.

1 - 12.333 −0.54 0.06 12.495(+j0.441) 0.77 1.38

3 0.508 11.259 −0.58 −0.58 11.356(+j0.354) 0.27 0.27

3.27 0.508 11.195 0.18 −0.04 11.245(+j0.347) 0.63 0.40

4.5 0.508 10.921 1.59 −0.26 10.800(+j0.317) 0.47 −1.37

6 0.635 10.502 4.76 1.96 10.099(+j0.279) 0.74 −1.95

6.15 0.635 10.471 4.45 3.67 10.055(+j0.277) 0.30 −0.45

9.2 0.635 9.930 7.35 4.25 9.292(+j0.233) 0.45 −2.45

9.8 0.635 9.838 7.52 3.83 9.165(+j0.226) 0.16 −3.27

10.2 0.635 9.780 7.77 7.77 9.085(+j0.221) 0.11 0.11

supposing that N = M . It is clear as the accuracy on the real part of the resonant frequency
reaches 3, 4, 5 and 6 significant figures by using, respectively, only 2, 7, 12 and 14 expansion functions
along the x and y axes for each current component.

To conclude, in Tables 2 and 3, the resonant frequencies of the square patches in grounded two-layer
and three-layer dielectric media sketched in Figures 2(b) and 2(c) are shown. The results obtained with
this method (by using only 6 expansion functions along the x and y axes for each current component)
and by means of a suitable application of the conformal mapping technique [18] are compared with
the experimental data and the results achieved by using the commercial software HFSS. As can be
seen, the presented method results to be more accurate than the formulas in [18]. Indeed, the resonant
frequencies obtained with the presented method differ always less than 1% from the ones obtained by
using HFSS, and only in two cases differ more than 2% and 3% from the experimental data (although it
should be noted that, in such cases, the agreement with HFSS is excellent). Conversely, the percentage
deviation of the resonant frequencies obtained with the formulas in [18] from those provided by HFSS
and the experimental data is strictly dependent on the dielectric permittivities of the layers (just for an
example, the percentage deviation showed in Table 2 increases more and more as εr2 increases).
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Table 3. Resonant frequencies of the square patch in a grounded three-layer dielectric medium sketched
in Figure 2(c). 2a = 2b = 10 mm, εr1 = 1, εr4 = 1.046, d4 − d3 = 0.99mm.

εr2
d2 − d1

(mm)
εr3

d3 − d2

(mm)

Li et al. [18] This method

fr (GHz)
Deviation (%)

fr (GHz)
Deviation (%)

HFSS Meas. HFSS Meas.

6 0.635 3.27 0.508 9.963 −3.74 −2.83 10.060(+j0.340) −0.10 0.85

9.2 0.635 3.27 0.508 9.408 −2.25 −0.44 9.550(+j0.345) −0.78 1.06

3.27 0.508 6 0.635 9.437 −2.46 −2.71 9.687(+j0.273) 0.12 −0.13

9.2 0.635 6 0.635 8.494 −3.75 −4.56 8.745(+j0.277) −0.91 −1.74

3.27 0.508 9.2 0.635 8.922 −0.31 −0.87 8.952(+j0.226) 0.02 −0.53

6 0.635 9.2 0.635 8.447 −1.20 −1.78 8.519(+j0.224) −0.36 −0.94

 

 

(a) (b)

(c)

Figure 2. Geometries analyzed throughout the paper. Square patches in a grounded (a) one-layer,
(b) two-layer, and (c) three layer dielectric media.

5. CONCLUSION

In this paper, a new accurate and efficient technique to analyze the complex resonances of a rectangular
patch in a multilayered medium has been introduced. Future perspective is the generalization of the
method to cases in which anisotropic media are involved.
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