Vol. 144
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-01-06
Azimuth Stacking Algorithm for Synthetic Aperture Radar Imaging
By
Progress In Electromagnetics Research, Vol. 144, 103-114, 2014
Abstract
The aim of this paper is to present a frequency domain method for synthetic aperture radar (SAR) imaging. By using two consecutive linear mappings along Doppler and frequency domains, an azimuth-dependent SAR transfer function has been discovered. Based on this new transfer function, the SAR image can be reconstructed by the proposed azimuth stacking algorithm. The new algorithm can form SAR image at each azimuth position without DFT wrap around errors. If Chirp z-transform (CZT) is applied to carry out the two consecutive mappings (since they are linear mappings), the proposed algorithm will not require interpolations and thus its reconstructed image would be free of truncation errors. The new algorithm has been validated using both simulated and experimental ultrawideband/widebeam (UWB/WB) SAR data.
Citation
Zhe Li, Tian Jin, Junjie Wu, Jian Wang, and Qing Huo Liu, "Azimuth Stacking Algorithm for Synthetic Aperture Radar Imaging," Progress In Electromagnetics Research, Vol. 144, 103-114, 2014.
doi:10.2528/PIER13112203
References

1. Curlander, J. C. and R. N. McDonough, Synthetic Aperture Radar: Systems and Signal Processing, Wiley, 1991.

2. Soumek, M., "Synthetic Aperture Radar Signal Processing with MATLAB Algorithms," Wiley, 1999.

3. Frey, O., C. Magnard, M. Ruegg, and E. Meier, "Focusing of airborne synthetic aperture radar data from highly nonlinear flight tracks," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 6, 1844-1858, 2009.
doi:10.1109/TGRS.2008.2007591

4. Yegulalp, A. F., "Fast backprojection algorithm for synthetic aperture radar," Proc. Record of the 1999 IEEE Radar Conf. , 60-65, 1999.

5. Ulander, L. M. H., H. Hellsten, and G. Stenstrom, "Synthetic-aperture radar processing using fast factorized back-projection," IEEE Transactions on Aerospace and Electronic Systems, Vol. 39, No. 3, 760-776, 2003.
doi:10.1109/TAES.2003.1238734

6. Frolind, P.-O. and L. M. H. Ulander, "Evaluation of angular interpolation kernels in fast back-projection SAR processing," IEE Proceedings --- Radar, Sonar and Navigation, Vol. 153, No. 3, 243-249, 2006.
doi:10.1049/ip-rsn:20045110

7. Demanet, L., M. Ferrara, N. Maxwell, J. Poulson, and L. Ying, "A butterfly algorithm for synthetic aperture radar imaging," SIAM J. Img. Sci., Vol. 5, 203-243, Feb. 2012.
doi:10.1137/100811593

8. Cumming, I. G. and and F. H. Wong, "Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation," Artech House, 2005.

9. Runge, H. and R. Bamler, "A novel high precision SAR focussing algorithm based on chirp scaling," Proc. Int. Geoscience and Remote Sensing Symp. IGARSS'92, 372-375, 1992.
doi:10.1109/IGARSS.1992.576715

10. Raney, R. K., H. Runge, R. Bamler, I. G. Cumming, and F. H. Wong, "Precision SAR processing using chirp scaling," IEEE Transactions on Geoscience and Remote Sensing, Vol. 32, No. 4, 786-799, 1994.
doi:10.1109/36.298008

11. Davidson, G. W., I. G. Cumming, and M. R. Ito, "Davidson, G. W., I. G. Cumming, and M. R. Ito, A chirp scaling approach for processing squint mode SAR data," IEEE Transactions on Aerospace and Electronic Systems, Vol. 32, No. 1, 121-133, 1996.
doi:10.1109/7.481254

12. Moreira, A. and Y. Huang, "Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation," IEEE Transactions on Geoscience and Remote Sensing, Vol. 32, No. 5, 1029-1040, 1994.
doi:10.1109/36.312891

13. Moreira, A., J. Mittermayer, and R. Scheiber, "Extended chirp scaling algorithm for air- and spaceborne SAR data processing in stripmap and scansar imaging modes," IEEE Transactions on Geoscience and Remote Sensing, Vol. 34, No. 5, 1123-1136, 1996.
doi:10.1109/36.536528

14. Wang, K. and X. Liu, "Quartic-phase algorithm for highly squinted SAR data processing," IEEE Geoscience and Remote Sensing Letters, Vol. 4, No. 2, 246-250, 2007.
doi:10.1109/LGRS.2006.890552

15. Zaugg, E. C. and D. G. Long, "Generalized frequency-domain SAR processing," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 11, 3761-3773, 2009.
doi:10.1109/TGRS.2009.2025372

16. Cafforio, C., C. Prati, and F. Rocca, "SAR data focusing using seismic migration techniques," IEEE Transactions on Aerospace and Electronic Systems, Vol. 27, No. 2, 194-207, 1991.
doi:10.1109/7.78293

17. Bamler, R., "A comparison of range-Doppler and wavenumber domain SAR focusing algorithms," IEEE Transactions on Geoscience and Remote Sensing, Vol. 30, No. 4, 706-713, 1992.
doi:10.1109/36.158864

18. Zhe, L., W. Jian, and L. Q. Huo, "Interpolation-free Stolt mapping for SAR imaging," IEEE.

19. Reigber, A., E. Alivizatos, A. Potsis, and A. Moreira, "Extended wavenumber-domain synthetic aperture radar focusing with integrated motion compensation," IEE Proceedings --- Radar, Sonar and Navigation, Vol. 153, No. 3, 301-310, 2006.
doi:10.1049/ip-rsn:20045087

20. Rabiner, L., R. Schafer, and C. Rader, "The chirp z-transform algorithm," IEEE Transactions on Audio and Electroacoustics, Vol. 17, No. 2, 86-92, 1969.
doi:10.1109/TAU.1969.1162034

21. Lanari, R., "A new method for the compensation of the SAR range cell migration based on the chirp z-transform," IEEE Transactions on Geoscience and Remote Sensing, Vol. 33, No. 5, 1296-1299, 1995.
doi:10.1109/36.469496

22. Sheen, D. R., C. M. Strawitch, and T. B. Lewis, "UHF wideband SAR design and preliminary results," Proc. Int. Geoscience and Remote Sensing Symp. IGARSS'94. Surface and Atmospheric Remote Sensing: Technologies, Data Analysis , Vol. 1, 289-291, 1994.

23. Sheen, D. R., S. J. Shackman, N. L. VandenBerg, D. L. Wiseman, L. P. Elenbogen, and R. F. reRawson , "The p-3 ultra-wideband SAR: description and examples," Proc. IEEE National Radar Conf., 50-53, 1996.

24. Soumekh, M., D. A. Nobles, M. C. Wicks, and G. R. J. Genello, "Signal processing of wide bandwidth and wide beamwidth p-3 SAR data," IEEE Transactions on Aerospace and Electronic Systems, Vol. 37, No. 4, 1122-1141, 2001.
doi:10.1109/7.976954

25. Goodman, R., S. Tummala, and W. Carrara, "Issues in ultra-wideband, widebeam SAR image formation ," Proc. Record of the IEEE 1995 Int. Radar Conf., 479-485, 1995.

26. Vu, V. T., T. K. Sjogren, M. I. Pettersson, and H. Hellsten, "An impulse response function for evaluation of UWB SAR imaging," IEEE Transactions on Signal Processing, Vol. 58, No. 7, 3927-3932, 2010.
doi:10.1109/TSP.2010.2047503

27. DeGraaf, S. R., "SAR imaging via modern 2-D spectral estimation methods," IEEE Transactions on Image Processing, Vol. 7, No. 5, 729-761, 1998.
doi:10.1109/83.668029

28. Stankwitz, H. C., R. J. Dallaire, and J. R. Fienup, "Nonlinear apodization for sidelobe control in SAR imagery," IEEE Transactions on Aerospace and Electronic Systems, Vol. 31, No. 1, 267-279, 1995.
doi:10.1109/7.366309

29. Harris, F. J., "On the use of windows for harmonic analysis with the discrete Fourier transform," Proceedings of the IEEE, Vol. 66, No. 1, 51-83, 1978.
doi:10.1109/PROC.1978.10837

30. Vu, V. T., T. K. Sjogren, M. I. Pettersson, and A. Gustavsson, Definition on SAR image quality measurements for UWB SAR, 71091A-71091A-9, SPIE | International Society for Optical Engineering, Oct. 2008.