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Azimuth Stacking Algorithm for Synthetic Aperture Radar Imaging

Zhe Li1, *, Tian Jin2, Junjie Wu3, Jian Wang1, and Qing Huo Liu4

Abstract—The aim of this paper is to present a frequency domain method for synthetic aperture radar
(SAR) imaging. By using two consecutive linear mappings along Doppler and frequency domains, an
azimuth-dependent SAR transfer function has been discovered. Based on this new transfer function,
the SAR image can be reconstructed by the proposed azimuth stacking algorithm. The new algorithm
can form SAR image at each azimuth position without DFT wrap around errors. If Chirp z-transform
(CZT) is applied to carry out the two consecutive mappings (since they are linear mappings), the
proposed algorithm will not require interpolations and thus its reconstructed image would be free
of truncation errors. The new algorithm has been validated using both simulated and experimental
ultrawideband/widebeam (UWB/WB) SAR data.

1. INTRODUCTION

Intrinsically, the challenge of processing synthetic aperture radar (SAR) data comes from the fact
that a long coherent aperture is needed to improve target’s azimuth resolution. This mainly results
in two opposite effects: 1) the desired longer illuminating time for each target in the imaged scene
to improve azimuth resolution; and 2) the range dependent signal dispersion along azimuth direction
in the two dimensional (2D) signal domain (range compression assumed). Due to the latter effect,
namely the space-variance of SAR signal, SAR image formation is inherently a 2D processing [1]. How
to properly correct and focus the space-variant dispersed signal on desired location is the main task
of SAR signal processing. This can be coped with directly by the full 2D time domain correlation
techniques. One representative of the time domain processing is the backprojection method [1–3],
which can be very precise for all SAR configurations (even with motion errors), but are time-consuming
and thus impractical for most of the SAR systems. In recent years, aiming to enhance its computational
efficiency, several fast factorized backprojection methods have been proposed [4–7].

On the other hand, great efforts have been made to explore the efficiency of the frequency
domain correlation techniques. By separating the signal’s space-variant dispersion effect into range
migration and azimuth dispersion parts, the Range-Doppler (RD) domain algorithms can form SAR
image efficiently in two steps: bulk range cell migration correction (RCMC) and azimuth compression.
The bulk RCMC can be implemented either by interpolation [8] or by the Chirp scaling (CS)
technique [9, 10] in the RD domain for low squint case. To handle data of high squint mode SAR systems
and/or the ultrawideband/widebeam (UWB/WB) SAR systems, several extended chirp scaling (ECS)
algorithms [11–15] have been developed in the past years by incorporating different higher order terms
of the Taylor series expansion on range frequency of the 2D SAR spectrum. The RD algorithms are very
fast for only involving FFT and complex phase multiplications. However, besides the requirement of the
Chirp modulated signal, they usually fail to properly focuse the UWB/WB SAR data, even with much
higher order terms of the Taylor expansion considered [15]. Therefore, the accurate frequency domain
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method, like ω-k algorithm [16–18] and its extended version [19], are still competitive alternatives to
SAR imaging.

The contribution of the work is to present a new frequency domain SAR imaging algorithm. The
method is Azimuth Stacking Algorithm (ASA). It first reshapes SAR 2D spectrum (or equivalent, SAR
transfer function) by using two consecutive one-dimensional (1D) linear mappings along Doppler domain
and frequency domain. Due to the mappings, the range-dependent SAR transfer function evolves into
azimuth-dependent. Then, the targets at each azimuth position can be accurately reconstructed by
the stacking approach [2]. Finally, the outcomes at each azimuth position can be combined to form a
2D SAR image. The new algorithm thus can form SAR image at each azimuth position without DFT
wrap around errors. If Chirp z-transform (CZT) [20, 21] is applied to carry out the two consecutive
mappings (since they are linear mappings), the proposed algorithm will not require interpolations and
its reconstructed image would be free of truncation errors.

The rest of this paper is organized as follows: in Section 2, the proposed azimuth stacking algorithm
will be mathematically derived and summarized. Section 3 describes how the azimuth stacking algorithm
can be implemented via CZT, and a detailed algorithm will be presented. The main characteristics of the
proposed algorithm is commented in Section 4. Section 5 gives both the simulation and the experimental
results. Finally, Section 6 concludes the paper.

2. DERIVATION OF THE AZIMUTH STACKING ALGORITHM

In order to facilitate our analysis, we will use a simplified point scatterer/target response to describe the
following derivations. This means that the radar radiation pattern and the limitations of different SAR
modes (such as stripmap and spotlight modes) will not be included in our analysis. Because only phase
information matters for focusing SAR signal, while the antenna radiation pattern and mode selection
only affects the focusing pattern. Then, after asymptotically evaluating, the 2D SAR spectrum (range
compressed) of a point scatterer located at (x, r) can be given as,

S(ku, ω) = exp

{
− j

√
(2k)2 − k2

u r − jkux

}
, (1)

in which the insignificant slowly varying amplitude terms and constants are suppressed [15, 17]. Where,
ku is the wavenumber variable corresponding to the azimuth (antenna illuminating) position u; ω the
angular velocity of the transmitted pulse, and k ≡ ω

c the corresponding wavenumber variable.
Based on the SAR 2D spectrum (1), the proposed azimuth stacking algorithm will be derived in

this section. This mainly consists of three parts: Doppler domain mapping, frequency domain mapping,
and azimuth stacking. The two consecutive mappings will change the conventional range-dependent
SAR transfer function (or 2D spectrum) into azimuth-dependent.

2.1. Doppler Domain Mapping

Defining the mapping along Doppler domain,

k′
u = ku · α(k), (2)

where k′
u is the Doppler after mapping; α(k) is the frequency dependent linear mapping operator, defined

as
α(k) =

kc

k
. (3)

Then, after substituting (2) and (3) into (1) for ku, the Doppler domain mapped SAR 2D spectrum
can be obtained, after some rearrangement, as

S(ω, k′
u) = exp
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2.2. Frequency Domain Mapping

Defining the mapping along the frequency domain,

kr = 2k · β(k′
u), (5)

where kr is the frequency domain after the mapping; β(k′
u) is the Doppler dependent linear mapping

operator, defined as

β(k′
u) =

√
1 −

(
k′

u

2kc

)2

. (6)

Then, by substituting (5) and (6) into (4), and after some rearrangement, the frequency domain
mapped SAR 2D spectrum can be achieved as

S(k′
u, kr) = exp

⎧⎨
⎩−jkr r − jkr

k′
u√

4k2
c − k′

u
2

x

⎫⎬
⎭ . (7)

At this stage, it would be worthwhile to point out that after Doppler domain mapping and frequency
domain mapping, the range-dependent SAR transfer function (1) has now been transformed into an
azimuth-dependent SAR transfer function (7). This new transfer function enables SAR image to be
reconstructed via the stacking method [2] along azimuth direction.

2.3. Azimuth Stacking Reconstruction Method

Mathematically, the SAR image can be obtained by performing a 2D inverse Fourier transform of the
target spectrum Γ(kx, kr)

γ(x, r) =
∫

kx

∫
kr

Γ(kx, kr) exp

{
jkxx + jkrr

}
dkx dkr. (8)

In order to map the above reconstruction from (kx, kr) domain into the SAR data domain (k′
u, kr),

see (7), we perform the following mapping

kx = kr
k′

u√
4k2

c − k′
u
2
, (9)

Then,

γ(x, r) =
∫

k′
u

∫
kr

S(k′
u, kr)J(k′

u, kr) exp

{
jkr

k′
u√

4k2
c − k′

u
2

x + jkrr

}
dk′

u dkr, (10)

where

J(k′
u, kr) = kr

4k2
c

(4k2
c − k′2

u )3/2
, (11)

is the Jacobian of the transform from (kx, kr) into (k′
u, kr), which is a slowly-fluctuating amplitude

function. Thus its contribution in the reconstruction is negligible and will be ignored in the following
analysis.

Then, after some rearrangement of (10), we will have

γ(x, r) =
∫

kr

jkrr dkr

∫
k′

u
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u, kr) exp
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Let
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u, kr;x) = exp
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thus, the targets function γ(xi, r) at azimuth position xi can be reconstructed by

γ(xi, r) =
∫

kr

jkrr dkr

∫
k′

u

S(k′
u, kr) · φ(k′

u, kr;xi)︸ ︷︷ ︸
1) filtering

dk′
u

︸ ︷︷ ︸
2) summation along Doppler domain︸ ︷︷ ︸

3) 1D inverse Fourier transform along kr domain

. (14)

2.4. The Azimuth Stacking Algorithm

In summary, according to the above derivations, the proposed azimuth stacking algorithm (see Fig. 1)
can then be given as below:

1) Range compression without IFFT;
2) Azimuth FFT to obtain SAR 2D spectrum;
3) Doppler domain mapping (2);
4) Frequency domain mapping (5);
5) Phase multiplication of S(k′

u, kr) by φ(k′
u, kr;xi); which corresponding to filtering the data for each

azimuth position;
6) Integrating (summing) the multiplication result over the Doppler domain k′

u to give γ(xi, kr);
7) Inverse Fourier transform of γ(xi, kr) to generate the reflectivity image γ(xi, r) at azimuth position

xi.
8) Iterating step 4) to step 6) for all azimuth positions;
9) Combing γ(xi, r) along azimuth direction to yield 2D SAR image.

It should be noted that since the Doppler domain mapping and frequency domain mapping are
linear mappings, they can be efficiently implemented by the Chirp z-transform (CZT) [20, 21] that
without suffering from the interpolation truncation error.

SAR Raw Data

Range compression
     without IFFT

Azimuth FFT

Doppler domain mapping

Frequency domain mapping

phase φ 

Azimuth Summation

Range IFFT

γ (x i , r )

x i

Figure 1. Block diagram of the proposed azimuth stacking algorithm. The highlighted part with
dashed box denotes the azimuth stacking processing.
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3. THE EFFICIENT IMPLEMENTATION OF THE AZIMUTH STACKING
ALGORITHM

In this section, we will present a detailed algorithm to efficiently implement the proposed algorithm.
The efficiency here means we will avoid any usage of interpolation to carry out the two mappings by
CZT [20], which only need FFTs and phase multiplications. A block diagram of the azimuth stacking
algorithm is shown in Fig. 2.

SAR Raw Data

Range Compression
       without IFFT

A  −n u
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u / 2

a

Azimuth FFT
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 −n 2
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Range FFT

phase  φx

   Azimuth
Summation

Range IFFT

γ (x i , r )

x i

Azimuth CZT

Range CZT

Azimuth Stacking

Figure 2. Block diagram of the proposed azimuth stacking algorithm via CZT processing. The
algorithm can be divided into three parts: azimuth CZT, range CZT and azimuth stacking, as
highlighted with dashed boxes.

3.1. Doppler Domain Mapping by CZT

Consulting (1), (2) and (4), we can find that the Doppler mapping can be done by the following scale
Fourier transform,

S(ω, k′
u) =

∫
S(ω, u) exp

{
− j π k′

u

1
α(k)

u

}
du. (15)
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According to the CZT algorithm [20], the mapped Doppler spectrum S(ω, k′
u) can be obtained by

the following convolution and multiplication expressed in a discrete form as:

S(ω, nk) =

{[
S(ω, nu)A−nu

a W n2
u/2

a

]
⊗ W−n2

u/2
a

}
· W n2

k/2
a , (16)

where S(ω, nk) is the discrete form of S(ω, k′
u), with nk = 0, 1, . . . , Nk − 1; S(ω, nu) is the discrete form

of S(ω, u), with nu = 0, 1, . . . , Nu − 1; Nk and Nu are the number of samples in azimuth frequency
domain and azimuth time domain, respectively. And ⊗ denotes the convolution which can be efficiently
implemented with FFTs, and Aa and Wa are the factors defining the starting point and the angular
spacing of the transform, respectively, and given as

Aa = exp
{
−jπ

1
α(k)

}
, (17)

Wa = exp
{
−j

2π
Nk

1
α(k)

}
. (18)

It should be noted that the above definitions of Aa and Wa mean that the CZT is evaluated on
a part of the unite circle in the z-plane starting at the point Aa (negative frequency) and rotating
counter-clockwise with spacing ratio defined by Wa [20]. This definition of the contour is appropriate
for SAR processing, for we usually assume that the zero frequency of the signal is located at the center.
Otherwise, such as defining the starting point at zero frequency point (Aa = 1), the CZT will lead to
an undesired result due to the over scaling of the negative part of the frequencies. The implementation
of (16) is illustrated as the first dotted part in the flow chart Fig. 2.

3.2. The Frequency Domain Mapping by CZT

Similarly, consulting (4), (6) and (7), the frequency domain mapping is equivalent to the following scaled
inverse Fourier transform plus a range FFT,

S(r, k′
u) =

∫
S′(ω, k′

u) exp
{
jπ2k β(k′

u) r
}

d(2k), (19)

where

S′(ω, k′
u) = S(ω, k′

u) · exp

⎧⎨
⎩j2k

√
1 −

(
k′

u

2kc

)2

Rtc

⎫⎬
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Phaseφ′

.

Rtc denotes the center of the interesting range area, and phase φ′ is used to take account the range
offset [17].

According to the CZT algorithm, Equation (19) can be implemented via the following convolution
and phase multiplication expressed in a discrete form

S(mr, k
′
u) =

{[
S′(mf , k′

u)A
−mf
r W

m2
f/2

r

]
⊗ W

−m2
f /2

r

}
· W

m2
r

2
r , (20)

where, S(mr, k
′
u) is the discrete form of S(r, k′

u), with mr = 0, 1, . . . ,Mr − 1; S′(mf , k′
u) is the discrete

form of S′(ω, k′
u), with mf = 0, 1, . . . ,Mf − 1; Mr and Mf are the number of the samples in range

time domain and range frequency domain, respectively. And ⊗ denotes the convolution which can be
efficiently implemented with FFTs, and Ar and Wr are the factors defining the starting point and the
angular spacing of the transform, respectively.

It is worth pointing out that by appropriately selecting Rtc, Mr and Ar, we can easily choose
the sub-area to be imaged in the range domain. The sub-area processing can greatly reduce the time
required in the stage of azimuth stacking. Supposing that the interesting range is [Rtc − R0, Rtc + R0],
where R0 is the half width of the region. Then the range frequency CZT can be defined by the following
steps:
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• Phase φ multiplication;
• Calculating the range bin numbers;

Mr = 2
⌈

R0

�r

⌉
, (21)

where, �a� denotes the smallest integer which is larger than a. �r = c�t/2 is the range bin size;
• Defining the angular spacing of the transform, Wr;

Wr = exp

{
j

2π
Mk

β(k′
u)

}
. (22)

• Defining the starting point of the transform, Ar;

Ar = exp

{
j

2π
Mk

Mr

2
β(k′

u)

}
. (23)

The CZT based implementation of the frequency domain mapping, in the whole algorithm, has been
diagrammatically shown in Fig. 2 as the dotted part of Range CZT. The mapped frequency domain
data can be finally obtained by a range FFT of S(r, k′

u).

3.3. Azimuth Stacking

The azimuth stacking processing has been explicitly summarized in Section 2.4, so will not be repeated
here. The azimuth bins can be defined by the following steps assuming the azimuth region of interest
is 2X0 with center Xc.

• Calculating the azimuth target bandwidth Bx using (9), as

Bx = max

⎡
⎣kr

k′
u√

4k2
c − k′

u
2

⎤
⎦− min

⎡
⎣kr

k′
u√

4k2
c − k′

u
2

⎤
⎦ . (24)

• Calculating the azimuth bin size

�x =
2π
Bx

. (25)

• then the azimuth bins xi can be given as

Nx = 2
⌈

X0

�x

⌉
, (26)

xi=1,...,Nx =
[
−Nx

2
, . . . ,

Nx

2
− 1

]
�x + Xc. (27)

4. COMMENTS ON THE NEW ALGORITHM

From the derivations, we can find that the proposed azimuth stacking algorithm is free of
approximations. Thus, it should be an accuracy-optimal imaging method and can process SAR data
regardless of the bandwidth, beamwidth and squint angle used. The proposed algorithm therefore can
be served as a potential alternative to SAR image formation when the RD algorithms are invalid. In
the processing, the CZT can be used to efficiently perform the two consecutive linear mappings that
the reconstructed image does not suffer from interpolation truncation errors which usually accompanied
with RMA algorithms.

However, due to its stacking property, the azimuth stacking algorithm is usually more time-
consuming than other frequency domain methods (such as RD algorithms and RMA). For example,
supposing there are M bins along Doppler domain and N bins along frequency domain for the 2D
spectrum, and the image to be formed of size m × N , then the number of computational operations of
the proposed algorithm (based on CZT processing) can be roughly counted by: complex multiplications:
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4MN +MN log2(MN)+3MN log2(4MN)+mMN and complex additions: 2MN log2(4MN)+mMN .
Nevertheless, the azimuth stacking algorithm can form SAR image along each azimuth position without
DFT wrap around errors [2]. Hence, a parallel computing architecture can be built to speed up the
processing. Like other frequency domain methods, the azimuth stacking algorithm is vulnerable to
motion errors. An effective motion compensation method for the new algorithm needs to be investigated
in future.

5. SIMULATION RESULTS AND EXPERIMENTAL DATA EXAMPLES

In this section, the simulated and experimental data are used to validate the proposed azimuth stacking
algorithm.

5.1. Results from Simulation Data

The point target simulation is employed to validate the proposed algorithm. In order to test the
algorithm in a more generic way, the key parameters of the low frequency, ultra-wideband/widebeam
(UWB/WB) P3 SAR system [22–24] has been adopted into the simulation case, as listed in Table 1.
The severe range migration associated with the fine resolution UWB/WB SAR systems has been posing
a significant challenge for most of the image formation algorithms [25]. In the simulation, 8 point
targets have been placed uniformly around a circle of radius 80 m. Its center, with another point target
assigned, is located at center range (500 m). This configuration of targets aims to validate the proposed
algorithm’s ability for image formation in all directions. Rectangular (uniform) window function is used
for final reconstruction, for the sake of keeping the performance of the proposed algorithm.

Table 1. Parameters for the simulation.

Transmitted bandwidth 500 MHz
Carrier frequency 470 MHz

Waveform Linear FM
Center squint angle 90 deg (broadside)
Effective beamwidth 50 deg

Center range 500 m
Range width 200 m

Azimuth width 200 m

In the simulation, the nonlinear Chirp scaling (NCS) method [11] is also implemented and compared
with to better evaluate the performance of the proposed azimuth stacking algorithm (ASA). As a
typical RD algorithm, the NCS method has being often used for SAR imaging in favor of its accuracy
and efficiency. The simulation result is shown in Fig. 3, where Fig. 3(a) and Fig. 3(c) present the
reconstructed point targets by ASA and NCS, respectively. Both of the images are plotted to −30 dB
for a better displaying effect. The 2D contour plots of the impulse response function (IRF) of the
right-most target (the squared point) are respectively shown in Fig. 3(b) and Fig. 3(d), after eight
times interpolated along both azimuth and range domains. From Fig. 3(a) and Fig. 3(b), we can see
that all the targets can be reconstructed quite well by the proposed algorithm. We can also notice
the highly non-orthogonal sidelobes of the IRF, which is one of the characteristics of UWB/WB SAR
systems. This kind of IRF of UWB SAR systems has been analysed in [26]. The non-rectangular
spectrum poses challenges for conventional sidelobe reduction (apodization) techniques [27–29]. How
to effectively suppress the non-orthogonal sidelobes still remains a problem. However, this beyonds the
aim of the paper.

On the other hand, from Fig. 3(c) and Fig. 3(d), we can find that the targets are not reconstructed
properly by the NCS method. This is not unexpected since the large fractional bandwidth and the wide
antenna beamwidth used in the simulation makes the approximations of the RD algorithms (even with
higher order) invalid. In order to further evaluate the focusing quantitatively, the typical image quality
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parameters, including (−3 dB) Impulse Response Width (IRW), the Integrated Sidelobe Ratio (ISLR)
and the Peak Sidelobe Ratio (PSLR), are also calculated and given in Table 2, where IRW A(m) and
IRW R(m) denotes the IRW along azimuth and range directions, respectively. Considering the non-
orthogonal sidelobes of the IRF, these parameters are obtained according to [30]. The processing times
for the two methods are also listed in Table 2. From the above simulation results, we can see that
the proposed ASA, comparing to the NCS, requires more processing time. This is mainly due to its
inefficient stacking processing. However, an excellent image focus can be achieved by the proposed
algorithm, which is an accuracy-optimal imaging method and can process SAR data regardless of the
bandwidth, beamwidth and squint angle used.
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Figure 3. Point target simulation results: (a) and (c) show the reconstructed images by the proposed
azimuth stacking algorithm (ASA) and the nonlinear Chirp scaling (NCS) algorithm, respectively. Both
of the reconstructed images are plotted to −30 dB for a better displaying effect. And the 2D contour
plots of the IRF for the right-most target (the squared point in the reconstructed image) are displayed
in (b) and (c) correspondingly, after eight times interpolated along both azimuth and range domains.
(a) The reconstructed image (ASA). (b) The IRF contour plots (ASA). (c) The reconstructed image
(NCS). (d) The IRF contour plots (NCS).

Table 2. Processing times and image quality parameters of the simulation.

Method Tim(s) IRW A(m) IRW R(m) ISLR(dB) (dB)
ASA 180.5 0.58 0.56 −5.27 −12.26
NCS 16.7 0.72 0.86 −1.22 −9.17
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5.2. Results from Experimental Data

The experimental UWB SAR raw data are collected in an anechoic chamber. A pair of Archimedean
spiral antennas (mutual distance: 0.79 m) is used to transmit and receive radar signals as depicted in
Fig. 4(a). The antennas are placed on an movable equipment, which can be accurately controlled by
the software, to form the synthetic aperture. A network analyzer (Agilent N5242A) is used to generate
the stepped-frequency signal covering a bandwidth from 0.5 to 2.5 GHz, with a step size of 1MHz. The
targets consists of two dihedral reflectors (T1, T2), two trihedral reflectors (T3, T4), and a metallic
sphere (T5), as shown in Fig. 4(b). The specific geometry of the imaging scene is depicted in Fig. 4(c).
The image produced by the proposed azimuth stacking algorithm is displayed in Fig. 4(d). Comparing
Fig. 4(c) and Fig. 4(d), we can find that all targets can be very well reconstructed by the proposed
algorithm.
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Local Azimuth /m
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Figure 4. The experimental measurement setup and the imaging result. (a) Archimedean spiral
antennas working as tansmitter (right) and receiver (left). (b) Photo of the five targets. (c) Specific
geometry of the imaging scene. (d) Imaging result.

6. CONCLUSIONS

We propose a new frequency domain SAR imaging method: azimuth stacking algorithm. After two
consecutive linear mappings along Doppler and frequency domains, the original range-dependent SAR
transfer function becomes into azimuth-dependent. Then, SAR image can be reconstructed by the
stacking method along azimuth direction. The algorithm can form SAR image at each azimuth position
without DFT wrap around errors. Interpolation can also be avoided in the reconstruction if Chirp
z-transform (CZT) is used to perform the two consecutive linear mappings. Finally, the effectiveness of
the proposed algorithm have been validated by both the numerical simulations and the experimental
measurements.
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