1. Collin, R. E., Field Theory of Guided Waves, IEEE Press, 1991.
2. Chew, W. C., "Analysis of optical and millimeter wave dielectric waveguide," Journal of Electromagnetic Waves and Applications, Vol. 3, No. 4, 359-377, 1989.
doi:10.1163/156939389X00106
3. Eyges, L., P. Gianino, and P. Wintersteiner, "Modes of dielectric waveguides of arbitrary cross-sectional shape," J. Opt. Soc. Am., Vol. 698, 1226-1235, 1979.
doi:10.1364/JOSA.69.001226
4. Bagby, J. S., D. P. Nyquist, and B. C. Drachman, "Integral formulation for analysis of integrated dielectric waveguides," IEEE Trans. Microw. Theory Tech., Vol. 33, 906-915, 1985.
doi:10.1109/TMTT.1985.1133149
5. Galick, A. T., T. Kerkhoven, and U. Ravaioli, "Iterative solution of the eigenvalue problem for a dielectric waveguide," IEEE Trans. Microw. Theory Tech., Vol. 40, 699-705, 1992.
doi:10.1109/22.127519
6. Schulz, N., K. Bierwirth, F. Arndt, and U. Koster, "Finite-difference method without spurious solutions for the hybrid-mode analysis of diffused channel waveguides," IEEE Trans. Mi- crow. Theory Tech., Vol. 38, 722-729, 1990.
doi:10.1109/22.130966
7. Bierwirth, K., N. Schulz, and F. Arndt, "Finite-difference analysis of rectangular dielectric waveguide structures," IEEE Trans. Microw. Theory Tech., Vol. 34, 1104-1114, 1986.
doi:10.1109/TMTT.1986.1133506
8. Schweig, E. and W. B. Bridges, "Computer analysis of dielectric waveguides: A finite-difference method," IEEE Trans. Microw. Theory Tech., Vol. 32, 531-541, 1984.
doi:10.1109/TMTT.1984.1132717
9. Radhakrishnan, K., "Analysis of dielectric waveguides and microstrip lines using Krylov subspace based techniques,", Ph.D. Thesis, U. Illinois, Urbana-Champaign, USA, 1999.
10. Radhakrishnan, K. and W. C. Chew, "Efficient analysis of waveguiding structures," Fast Efficient Algorithms in Comp. Electrom., 461-485, Chapter 10, Artech House, Inc., Boston, 2001. Reprinted by EML, Univ. Illinois, 2006.
11. Cendes, Z. J. and P. Silvester, "Full-wave analysis of multiconductor transmission lines on anisotropic inhomogeneous substrates," IEEE Trans. Microw. Theory Tech., Vol. 18, 1124-1131, 1970.
doi:10.1109/TMTT.1970.1127422
12. Ahmed, S. and P. Daly, "Finite element method for inhomogeneous waveguides," IEE Proc., Vol. 116, 1661-1664, 1969.
13. Chew, W. C. and M. A. Nasir, "A variational analysis of anisotropic, inhomogeneous dielectric waveguides," IEEE Trans. Microw. Theory Tech., Vol. 37, 661-668, 1989.
doi:10.1109/22.18837
14. Ikeuchi, M., H. Swami, and H. Niki, "Analysis of open type dielectric waveguide by the finite element iterative method," IEEE Trans. Microw. Theory Tech., Vol. 29, 234-239, 1981.
doi:10.1109/TMTT.1981.1130333
15. Rahman, B. M. A. and J. B. Davies, "Finite-element analysis of optical and microwave waveguide problems," IEEE Trans. Microw. Theory Tech., Vol. 32, 20-28, 1984.
doi:10.1109/TMTT.1984.1132606
16. Koshiba, M., K. Hayata, and M. Suzuki, "Approximate scalar finite-element analysis of anisotropic optical waveguides with off-diagonal elements in a permittivity tensor," IEEE Trans. Microw. Theory Tech., Vol. 32, 587-593, 1984.
doi:10.1109/TMTT.1984.1132733
17. Lee, J. F., D. K. Sun, and Z. J. Cendes, "Full-wave analysis of dielectric waveguides using tangential vector finite elements," IEEE Trans. Microw. Theory Tech., Vol. 39, 1262-1271, 1991.
doi:10.1109/22.85399
18. Lee, J. F., "Finite element analysis of lossy dielectric waveguides," IEEE Trans. Microw. Theory Tech., Vol. 42, 1025-1031, 1994.
doi:10.1109/22.293572
19. Feynman, R., R. B. Leighton, and M. L. Sands, The Feynman Lectures on Physics, Vol. I, Chapter 52, Addison-Wesley Publishing Co., 1965.
20. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, 1995.
21. Chew, W. C., "Inhomogeneously filled waveguides," Theory of Guided Waves, Note of Course at U. Illinois, Urbana-Champaign, 2012.
22. Warnick, K. F., R. H. Selfridge, and D. V. Arnold, "Teaching electromagnetic field theory using differential forms," IEEE Trans. Educ., Vol. 40, 53-68, Feb. 1997.
doi:10.1109/13.554670
23. Flanders, H., Differential Forms with Applications to the Physical Sciences, Dover Publications, Mineola, NY, 1963.
24. Tarhasaari, T. and L. Kettunen, "Some realizations of a discrete Hodge operator: A reinterpretation of finite element techniques," IEEE Trans. Magn., Vol. 35, 1494-1497, 1999.
doi:10.1109/20.767250
25. Teixeira, F. L. and W. C. Chew, "Lattice electromagnetic theory from a topological viewpoint," J. Math. Phys., Vol. 40, 169-187, 1999.
doi:10.1063/1.532767
26. Bossavit, A., "Whitney forms: A class of finite elements for three-dimensional computations in electromagnetism," IEE Proc., Vol. 135, 493-500, 1998.
27. Bossavit, A., "Generating Whitney forms of polynomial degree one and higher," IEEE Trans. Magn., Vol. 38, 314-344, 2000.
28. He, B. and F. L. Teixeira, "On the degree of freedom of lattice electrodynamics," Phys. Lett. A, Vol. 336, 1-7, 2005.
doi:10.1016/j.physleta.2005.01.001
29. He, B. and F. L. Teixeira, "Geometric finite element discretization of Maxwell equations in primal and dual spaces," Phys. Lett. A, Vol. 349, 1-14, 2006.
doi:10.1016/j.physleta.2005.09.002
30. He, B., "Compatible discretizations for Maxwell equations,", Ph.D. Thesis, Ohio State U., USA, 2006.
31. Kim, J. and F. L. Teixeira, "Parallel and explicit finite-element time-domain method for Maxwell's equations," IEEE Trans. Antennas Propag, Vol. 59, 2350-2356, 2011.
doi:10.1109/TAP.2011.2143682
32. Rao, S. M., D. R. Wilton, and W. A. Glisson, "Electromagnetic scattering by arbitrarily shaped three dimensional homogeneous lossy dielectric objects," IEEE Trans. Antennas Propag., Vol. 30, 409-418, 1982.
doi:10.1109/TAP.1982.1142818
33. Buffa, A. and S. Christiansen, "A dual finite element complex on the barycentric refinement," Math. Comput., Vol. 40, 1743-1769, 2007.
doi:10.1090/S0025-5718-07-01965-5
34. Chen, Q. and D. R. Wilton, "Electromagnetic scattering by three-dimensional arbitrary complex material/conducting bodies," Antennas Propag. Soc. Int. Symp., 1990.
35. Andriulli, F. P., K. Cools, H. Bagci, F. Olyslager, A. Buffa, S. Christiansen, and E. Michielssen, "A multiplicative Calderon preconditioner for the electric field integral equation," IEEE Trans. Antennas Propag., Vol. 56, 2398-2412, 2008.
doi:10.1109/TAP.2008.926788
36. Grote, M. J. and T. Huckle, "Parallel preconditioning with sparse approximate inverses," SIAM J. Sci. Comp., Vol. 18, 838-853, 1997.
doi:10.1137/S1064827594276552
37. Goell, J. E., "A circular-harmonic computer analysis of rectangular dielectric waveguides," Bell Syst. Tech. J., Vol. 48, 2133-2160, 1969.
doi:10.1002/j.1538-7305.1969.tb01168.x
38. Yang, J. J., G. E. Howard, and Y. L. Chow, "A simple tech-nique for calculating the propagation dispersion of multiconductor transmission lines in multilayer eielectric media," IEEE Trans. Mi- crow. Theory Tech., Vol. 40, 622-627, 1992.
doi:10.1109/22.127508