Vol. 143
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-01-17
Differential Forms Inspired Discretization for Finite Element Analysis of Inhomogeneous Waveguides (Invited Paper)
By
Progress In Electromagnetics Research, Vol. 143, 745-760, 2013
Abstract
We present a differential forms inspired discretization for variational finite element analysis of inhomogeneous waveguides. The variational expression of the governing equation involves transverse fields only. The conventional discretization with edge elements yields an unsolvable generalized eigenvalue problem since one of the sparse matrix is singular. Inspired by the differential forms where the Hodge operator transforms 1-forms to 2-forms, we propose to discretize the electric and magnetic field with curl-conforming basis functions on the primal and dual grid, and discretize the magnetic flux density and electric displacement field with the divergence-conforming basis functions on the primal and dual grid, respectively. The resultant eigenvalue problem is well-conditioned and easy to solve. The proposed scheme is validated by several numerical examples.
Citation
Qi Dai, Weng Cho Chew, and Li Jun Jiang, "Differential Forms Inspired Discretization for Finite Element Analysis of Inhomogeneous Waveguides (Invited Paper)," Progress In Electromagnetics Research, Vol. 143, 745-760, 2013.
doi:10.2528/PIER13101801
References

1. Collin, R. E., Field Theory of Guided Waves, IEEE Press, 1991.

2. Chew, W. C., "Analysis of optical and millimeter wave dielectric waveguide," Journal of Electromagnetic Waves and Applications, Vol. 3, No. 4, 359-377, 1989.
doi:10.1163/156939389X00106

3. Eyges, L., P. Gianino, and P. Wintersteiner, "Modes of dielectric waveguides of arbitrary cross-sectional shape," J. Opt. Soc. Am., Vol. 698, 1226-1235, 1979.
doi:10.1364/JOSA.69.001226

4. Bagby, J. S., D. P. Nyquist, and B. C. Drachman, "Integral formulation for analysis of integrated dielectric waveguides," IEEE Trans. Microw. Theory Tech., Vol. 33, 906-915, 1985.
doi:10.1109/TMTT.1985.1133149

5. Galick, A. T., T. Kerkhoven, and U. Ravaioli, "Iterative solution of the eigenvalue problem for a dielectric waveguide," IEEE Trans. Microw. Theory Tech., Vol. 40, 699-705, 1992.
doi:10.1109/22.127519

6. Schulz, N., K. Bierwirth, F. Arndt, and U. Koster, "Finite-difference method without spurious solutions for the hybrid-mode analysis of diffused channel waveguides," IEEE Trans. Mi- crow. Theory Tech., Vol. 38, 722-729, 1990.
doi:10.1109/22.130966

7. Bierwirth, K., N. Schulz, and F. Arndt, "Finite-difference analysis of rectangular dielectric waveguide structures," IEEE Trans. Microw. Theory Tech., Vol. 34, 1104-1114, 1986.
doi:10.1109/TMTT.1986.1133506

8. Schweig, E. and W. B. Bridges, "Computer analysis of dielectric waveguides: A finite-difference method," IEEE Trans. Microw. Theory Tech., Vol. 32, 531-541, 1984.
doi:10.1109/TMTT.1984.1132717

9. Radhakrishnan, K., "Analysis of dielectric waveguides and microstrip lines using Krylov subspace based techniques,", Ph.D. Thesis, U. Illinois, Urbana-Champaign, USA, 1999.

10. Radhakrishnan, K. and W. C. Chew, "Efficient analysis of waveguiding structures," Fast Efficient Algorithms in Comp. Electrom., 461-485, Chapter 10, Artech House, Inc., Boston, 2001. Reprinted by EML, Univ. Illinois, 2006.

11. Cendes, Z. J. and P. Silvester, "Full-wave analysis of multiconductor transmission lines on anisotropic inhomogeneous substrates," IEEE Trans. Microw. Theory Tech., Vol. 18, 1124-1131, 1970.
doi:10.1109/TMTT.1970.1127422

12. Ahmed, S. and P. Daly, "Finite element method for inhomogeneous waveguides," IEE Proc., Vol. 116, 1661-1664, 1969.

13. Chew, W. C. and M. A. Nasir, "A variational analysis of anisotropic, inhomogeneous dielectric waveguides," IEEE Trans. Microw. Theory Tech., Vol. 37, 661-668, 1989.
doi:10.1109/22.18837

14. Ikeuchi, M., H. Swami, and H. Niki, "Analysis of open type dielectric waveguide by the finite element iterative method," IEEE Trans. Microw. Theory Tech., Vol. 29, 234-239, 1981.
doi:10.1109/TMTT.1981.1130333

15. Rahman, B. M. A. and J. B. Davies, "Finite-element analysis of optical and microwave waveguide problems," IEEE Trans. Microw. Theory Tech., Vol. 32, 20-28, 1984.
doi:10.1109/TMTT.1984.1132606

16. Koshiba, M., K. Hayata, and M. Suzuki, "Approximate scalar finite-element analysis of anisotropic optical waveguides with off-diagonal elements in a permittivity tensor," IEEE Trans. Microw. Theory Tech., Vol. 32, 587-593, 1984.
doi:10.1109/TMTT.1984.1132733

17. Lee, J. F., D. K. Sun, and Z. J. Cendes, "Full-wave analysis of dielectric waveguides using tangential vector finite elements," IEEE Trans. Microw. Theory Tech., Vol. 39, 1262-1271, 1991.
doi:10.1109/22.85399

18. Lee, J. F., "Finite element analysis of lossy dielectric waveguides," IEEE Trans. Microw. Theory Tech., Vol. 42, 1025-1031, 1994.
doi:10.1109/22.293572

19. Feynman, R., R. B. Leighton, and M. L. Sands, The Feynman Lectures on Physics, Vol. I, Chapter 52, Addison-Wesley Publishing Co., 1965.

20. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, 1995.

21. Chew, W. C., "Inhomogeneously filled waveguides," Theory of Guided Waves, Note of Course at U. Illinois, Urbana-Champaign, 2012.

22. Warnick, K. F., R. H. Selfridge, and D. V. Arnold, "Teaching electromagnetic field theory using differential forms," IEEE Trans. Educ., Vol. 40, 53-68, Feb. 1997.
doi:10.1109/13.554670

23. Flanders, H., Differential Forms with Applications to the Physical Sciences, Dover Publications, Mineola, NY, 1963.

24. Tarhasaari, T. and L. Kettunen, "Some realizations of a discrete Hodge operator: A reinterpretation of finite element techniques," IEEE Trans. Magn., Vol. 35, 1494-1497, 1999.
doi:10.1109/20.767250

25. Teixeira, F. L. and W. C. Chew, "Lattice electromagnetic theory from a topological viewpoint," J. Math. Phys., Vol. 40, 169-187, 1999.
doi:10.1063/1.532767

26. Bossavit, A., "Whitney forms: A class of finite elements for three-dimensional computations in electromagnetism," IEE Proc., Vol. 135, 493-500, 1998.

27. Bossavit, A., "Generating Whitney forms of polynomial degree one and higher," IEEE Trans. Magn., Vol. 38, 314-344, 2000.

28. He, B. and F. L. Teixeira, "On the degree of freedom of lattice electrodynamics," Phys. Lett. A, Vol. 336, 1-7, 2005.
doi:10.1016/j.physleta.2005.01.001

29. He, B. and F. L. Teixeira, "Geometric finite element discretization of Maxwell equations in primal and dual spaces," Phys. Lett. A, Vol. 349, 1-14, 2006.
doi:10.1016/j.physleta.2005.09.002

30. He, B., "Compatible discretizations for Maxwell equations,", Ph.D. Thesis, Ohio State U., USA, 2006.

31. Kim, J. and F. L. Teixeira, "Parallel and explicit finite-element time-domain method for Maxwell's equations," IEEE Trans. Antennas Propag, Vol. 59, 2350-2356, 2011.
doi:10.1109/TAP.2011.2143682

32. Rao, S. M., D. R. Wilton, and W. A. Glisson, "Electromagnetic scattering by arbitrarily shaped three dimensional homogeneous lossy dielectric objects," IEEE Trans. Antennas Propag., Vol. 30, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

33. Buffa, A. and S. Christiansen, "A dual finite element complex on the barycentric refinement," Math. Comput., Vol. 40, 1743-1769, 2007.
doi:10.1090/S0025-5718-07-01965-5

34. Chen, Q. and D. R. Wilton, "Electromagnetic scattering by three-dimensional arbitrary complex material/conducting bodies," Antennas Propag. Soc. Int. Symp., 1990.

35. Andriulli, F. P., K. Cools, H. Bagci, F. Olyslager, A. Buffa, S. Christiansen, and E. Michielssen, "A multiplicative Calderon preconditioner for the electric field integral equation," IEEE Trans. Antennas Propag., Vol. 56, 2398-2412, 2008.
doi:10.1109/TAP.2008.926788

36. Grote, M. J. and T. Huckle, "Parallel preconditioning with sparse approximate inverses," SIAM J. Sci. Comp., Vol. 18, 838-853, 1997.
doi:10.1137/S1064827594276552

37. Goell, J. E., "A circular-harmonic computer analysis of rectangular dielectric waveguides," Bell Syst. Tech. J., Vol. 48, 2133-2160, 1969.
doi:10.1002/j.1538-7305.1969.tb01168.x

38. Yang, J. J., G. E. Howard, and Y. L. Chow, "A simple tech-nique for calculating the propagation dispersion of multiconductor transmission lines in multilayer eielectric media," IEEE Trans. Mi- crow. Theory Tech., Vol. 40, 622-627, 1992.
doi:10.1109/22.127508