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Abstract—We present a differential forms inspired discretization for
variational finite element analysis of inhomogeneous waveguides. The
variational expression of the governing equation involves transverse
fields only. The conventional discretization with edge elements yields
an unsolvable generalized eigenvalue problem since one of the sparse
matrix is singular. Inspired by the differential forms where the Hodge
operator transforms 1-forms to 2-forms, we propose to discretize the
electric and magnetic field with curl-conforming basis functions on
the primal and dual grid, and discretize the magnetic flux density
and electric displacement field with the divergence-conforming basis
functions on the primal and dual grid, respectively. The resultant
eigenvalue problem is well-conditioned and easy to solve. The proposed
scheme is validated by several numerical examples.

1. INTRODUCTION

Since their introduction in the early 20th century, electromagnetic
waveguides have been intensively studied, and find a variety of
applications at different frequency bands ranging from radio-frequency
(RF) and microwaves up to optical frequencies [1]. Advances in
waveguides technology have called for numerical analysis of various
wave guiding structures, e.g., metallic waveguides, microstrip lines
and fiber optics. To list a few, [2] used a combination of numerical
and analytical methods to solve for the waveguide eigenmodes; [3]
and [4] used surface and volume integral equation methods to solve
dielectric waveguide problems, respectively; finite-difference [5–10] and
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finite element [11–18] techniques are powerful and flexible in modeling
a wide variety of waveguides.

In the finite element related publications, Cendes and Sil-
vester [11], and Ahmed and Daly [12] solved the problem with Ez-Hz

formulation which suffers from the occurrence of spurious modes. This
difficulty was overcome by using the transverse field formulation [7, 13].
For example, Nasir and Chew [13] presented a variational analysis
of anisotropic and inhomogeneous waveguides where only transverse
fields are involved. Their method is limited by the usage of nodal basis
functions which fail to deal with structures with sharp discontinuities.
Lee [18] proposed a hybrid finite element analysis where the trans-
verse and z components of the electric field are discretized with edge
elements and nodal basis functions, respectively. This hybrid formula-
tion results in a larger eigenvalue problem to solve since the unknowns
for Ez are also included.

The variational expression suggested in [13, 20, 21] has the beauty
of mathematical symmetry and clear physical meaning in each of
its terms. However, the edge element based discretization for this
variational problem is rarely documented in the literature. One
possible reason is that the divergence terms in the variational form
require the basis functions to be divergence-conforming while edge
elements used to expand the fields are curl-conforming. Also, a naive
implementation of the vector basis functions results in a singular
matrix giving rise to an unsolvable generalized eigenvalue problem.
Fortunately, these difficulties can be overcome by using a differential
forms inspired discretization. Differential forms has been increasingly
adopted in deriving stable FEM schemes in recent years. Hopefully,
it will serve as useful guidance on the finite element discretization in
complicated variational problems. In this paper, we adopt notations
of differential forms in Section 2.2. The rest sections are written in
notations of vector calculus.

2. FORMULATIONS

2.1. Variational Eigenvalue Problem

It follows from [13, 20, 21] that the governing wave equation for an
inhomogeneous and anisotropic waveguide is

∇× µ−1 · ∇ ×E− ω2ε ·E = 0, (1)
where the waveguide is assumed to have reflection symmetry in the
propagation z direction such that [19, 21]

ε =
[
εs 0
0 εzz

]
, (2)
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and

µ =
[
µs 0
0 µzz

]
. (3)

Using the divergence condition

ikzEz = −ε−1
zz ∇s · εs ·Es (4)

to eliminate Ez, the transverse electric field Es satisfies

µs · ẑ ×∇s × µ−1
zz ∇s ×Es − ẑ ×∇sε

−1
zz ∇s · εs ·Es

−ω2µs · ẑ × εs ·Es + k2
z ẑ ×Es = 0 (5)

The transpose equation of (5) is given by

ε t
s · ẑ ×∇s × ε−1

zz ∇s ×Ha
s − ẑ ×∇sµ

−1
zz ∇s · µt

s ·Ha
s

−ω2ε t
s · ẑ × µ t

s ·Ha
s + k2

z ẑ ×Ha
s = 0 (6)

The variational expression for eigenvalue problems (5) and (6) is

−k2
z =

〈Ha
s, LEs〉

〈Ha
s, BEs〉 , (7)

where

L = µs · ẑ×∇s×µ−1
zz ∇s×−ẑ ×∇sε

−1
zz ∇s · εs · −ω2µs · ẑ × εs·, (8a)

B = ẑ × . (8b)

The reaction inner product is define as 〈f ,g〉 =
∫
S f · g dΩ where S

is the cross section of the waveguide. Moreover, it is easy to find the
transpose operators of L and B to be

Lt = −εt
s · ẑ×∇s × ε−1

zz ∇s×+ẑ×∇sµ
−1
zz ∇s ·µt

s ·+ω2εt
s · ẑ×µt

s·, (9a)
Bt = −ẑ × . (9b)

Hence, We can write Equation (7) as

−〈Ha
s, ẑ ×Es〉 k2

z = − 〈
ẑ∇s · µ t

s ·Ha
s, µ−1

zz ∇s ×Es

〉

+
〈
ε−1
zz ∇s ×Ha

s, ẑ∇s · εs ·Es

〉

−ω2 〈Ha
s, µs · ẑ × εs ·Es〉 (10)

A straightforward implementation of the vector basis functions is
to expand both transverse fields Es and Ha

s in Equation (10) with the
2-D curl-conforming Rao-Wilton-Glisson (RWG) elements [32] (edge
elements) wj . Since the divergence terms in Equation (10) prohibit the
direct use of curl-conforming RWG’s, the transverse εs ·Es and µt

s ·Ha
s

are expanded with divergence-conforming RWG’s fj = ẑ × wj . The
main problem of this discretization scheme is that the matrix resulted
from 〈Ha

s, ẑ × Es〉 is singular, where the diagonal entries 〈fj , ẑ × fj〉
are all zero.
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2.2. Differential Forms

In differential forms [22–30], Maxwell’s equations (source-free case) are
written as

dE = iωB, (11a)
dB = 0, (11b)
dH = −iωD, (11c)
dD = 0, (11d)

where E and H are electric and magnetic intensity 1-forms; D and
B are electric and magnetic flux 2-forms; d is the metric-free exterior
derivative operator [25, 30]. The constitutive relations are written in
terms of Hodge operators as D = ?εE and H = ?µ−1B, where the
continuum Hodge (star) operators give rise to an isomorphism between
p-forms and (n− p)-forms in a n-dimensional space [24].

On the discrete level, both the 1-form E and 2-form D cannot
be represented simultaneously in the same mesh [24]. The remedy
is to assign E and D on a pair of dual grids, which also applies to
H and B. In 3-D applications [24, 30], E is associated with primal
edges (1-cells), and B is associated with primal faces (2-cells), where
the primal grid is a cell complex which can be simplices, rectangular
boxes, polyhedra, and so on. In the dual lattice which yields one-to-one
correspondence with the primal one between p-cells and (n − p)-cells,
H is associated with dual edges (1-cells), and D is associated with dual
faces (2-cells). The dual grid of a simplicial mesh can be chosen based
on a barycentric subdivision, or in some cases, based on a Delaunay-
Voronoi construction [24].

One can discretize Maxwell’s equations (11) by expanding E and
B with Whitney forms as [31]

E =
∑

j

ejW
1
j , (12a)

B =
∑

j

bjW
2
j , (12b)

where W p
j is the Whitney p-form associated with the ith p-cell. The

discrete constitutive equations are written as

D = [?ε]E, (13a)
H = [?µ−1 ]B, (13b)

where E, H, D, and B are column vectors whose elements are the
degrees of freedom (DoFs) of the problem, and the discrete Hodge
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operators have entries as

[?ε]ij =
∫

Ω
εW 1

i ∧ ?W 1
j , (14a)

[?µ−1 ]
ij

=
∫

Ω

1
µ

W 2
i ∧ ?W 2

j , (14b)

where ∧ is the exterior product.

2.3. Differential Forms Inspired Discretization

To implement the variational finite element analysis of inhomogeneous
and anisotropic waveguides, we apply the Rayleigh-Ritz procedure to
Equation (10). Inspired by the differential forms, in terms of vector
calculus, we expand the transverse fields Es with curl-conforming
primal basis functions wj as

Es =
N∑

j=1

ejwj , (15)

and Ha
s with curl-conforming dual basis functions w̃j as

Ha
s =

N∑

j=1

hjw̃j . (16)

On the other hand, we expand transverse µ t
s · Ha

s with divergence-
conforming primal basis functions fj as

µ t
s ·Ha

s =
N∑

j=1

bjfj , (17)

and εs ·Es with divergence-conforming dual basis functions f̃j as

εs ·Es =
N∑

j=1

dj f̃j . (18)

We choose fj and f̃j to be RWG basis functions [32] and Buffa-
Christiansen (BC) basis functions [33], respectively, both of which
are divergence-conforming, and can be considered as the 2-D vector
calculus version of Whitney 2-forms W 2

j on the primal and dual grids,
respectively†. The divergence-conforming and curl-conforming basis
† Another possibility is to use Chen-Wilton (CW) basis functions [34].
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functions satisfy

fj = ẑ ×wj , (19a)

f̃j = ẑ × w̃j , (19b)

where wj and w̃j can be considered as the 2-D vector calculus version
of Whitney 1-forms W 1

j on the primal and dual grids, respectively.
Defined on the primal grid, the curl-conforming RWG’s wj and

the divergence-conforming RWG’s fj are illustrated in Figures 1(a)
and (b), respectively. On the other hand, the dual basis function is
constructed on the barycentric mesh. Defined on the dual grid, the
curl-conforming BC’s w̃j and the divergence-conforming BC’s f̃j are
illustrated in Figures 2(a) and (b), respectively. Also of note is that
w̃j is quasi-divergence-conforming, while f̃j is quasi-curl-conforming.

Testing both sides of (18) with wi yields
∑

j

〈wi, εs ·wj〉 ej =
∑

j

〈
wi, f̃j

〉
dj , i = 1, . . . , N, (20)

(a) (b)

Figure 1. Basis functions on the primal grid. (a) Curl-conforming
RWG’s (edge elements) wi. (b) Divergence-conforming RWG’s fi.

(b)(a)

Figure 2. Basis functions on the dual grid. (a) Curl-conforming and
quasi-divergence-conforming BC’s w̃i. (b) Divergence-conforming and
quasi-curl-conforming BC’s f̃i.
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or more compactly, in a matrix form as

[?ε] · E = [G] · D, (21)

where the discrete Hodge operator [?ε] has elements

[?ε]ij = 〈wi, εs ·wj〉 , (22)

which are consistent with their 3-D differential forms counter-
parts (14a). The Gramian matrix [G] has elements

[G]ij =
〈
wi, f̃j

〉
, (23)

which are consistent with those obtained in the multiplicative Calderon
preconditioner for integral equation problems [35]. Moreover, the
arrays of DoFs on primal and dual grids E and D have elements ej

and dj , respectively. Thus, we have

D = [G]−1 · [?ε] · E. (24)

Similarly, we can obtain

[?µ] ·H = −[G]t · B, (25)

or
B = − (

[G]t
)−1 · [?µ] ·H, (26)

where the discrete Hodge operator [?µ] has elements

[?µ]ij =
〈
w̃i, µ t

s · w̃j

〉
, (27)

and the arrays of DoFs on primal and dual grids B and H have elements
bj and hj , respectively. Here, [G]−1 can be replaced with the sparse
approximate inverse of [G], detail of which is provided in Appendix A.

Substituting Equations (15) to (17) into (10), we have

− 〈
ẑ∇s · µ t

s ·Ha
s, µ−1

zz ∇s ×Es

〉

= −
〈

ẑ∇s ·
∑

j

bjfj , µ−1
zz ∇s ×

∑

j

ejwj

〉

= −Bt · [K1] · E = Ht · [?µ]t · [G]−1 · [K1] · E = Ht · [L1] · E (28)

where [L1] = [?µ]t · [G]−1 · [K1], and matrix [K1] has elements [K1]ij =
〈ẑ∇s · fi, µ−1

zz ∇s ×wj〉.
Similarly, we have〈

ε−1
zz ∇s ×Ha

s, ẑ∇s · εs ·Es

〉
= Ht · [L2] · E, (29)

−ω2 〈Ha
s, µs · ẑ × εs ·Es〉 = Ht · [L3] · E, (30)

〈Ha
s, ẑ ×Es〉 = Ht · [B] · E, (31)
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where [L2] = [K2]·[G]−1·[?ε], and matrix [K2] has elements that [K2]ij =
〈ε−1

zz ∇s× w̃i, ẑ∇s · f̃j〉, and moreover, [L3]ij = −ω2〈w̃i, µs · ẑ×εs ·wj〉,
and [B]ij = 〈w̃i, fj〉.

Hence, the discrete variational problem of (7) can be written as

−k2
z =

Ht · [L] · E
Ht · [B] · E , (32)

where [L] = [L1] + [L2] + [L3]. We require that the first variations of
Equation (32) with respect to the ej ’s and hj ’s vanish. The optimal
solution of the variational problem is then given by the solution of the
following eigenvalue problems(

[L] + k2
z [B]

) · E = 0, (33)(
[L]t + k2

z [B]t
) ·H = 0, (34)

where [L]t and [B]t can also be obtained by using Equations (9a), (9b),
(15) to (18).

3. NUMERICAL RESULTS

3.1. Circularly Cylindrical Waveguide

The radius of the circularly cylindrical waveguide is set to a = 1mm.
Totally 1,938 triangular elements are generated by ANSYS, and the

Table 1. First few lowest eigenvalues ks of circularly cylindrical
waveguide.

Mode Computed (×103) Analytical (×103) Error (%)

TE
(1)
11 1.8631 1.8412 1.19

TE
(2)
11 1.8624 1.8412 1.15

TM01 2.4417 2.4048 1.53

TE
(1)
21 3.0952 3.0542 1.34

TE
(2)
21 3.0951 3.0542 1.34

TE01 3.8576 3.8317 0.68

TM
(1)
11 3.8881 3.8317 1.47

TM
(2)
11 3.8876 3.8317 1.46

TE
(1)
31 4.2686 4.2012 1.60

TE
(2)
31 4.2688 4.2012 1.61

TM
(1)
21 5.2259 5.1356 1.76

TM
(2)
21 5.2251 5.1356 1.74
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number of unknowns is 2,853. By setting the working frequency to
zero, eigenvalues ks are the nth root of Jm(x) = 0 or J ′m(x) = 0 where
Jm(x) are Bessel functions of the first kind. The superscripts (1) and (2)

denote the degeneracy. The first few computed eigenvalues ks and the
analytical values are given in Table 1. The electric field distributions
of several modes are illustrated in Figure 3. We then obtain the kza-
k0a diagram for several guided modes in Figure 4, where the computed
results (red squares) agree well with the theoretical results (solid lines).

3.2. Rectangular Dielectric Waveguide

We model a rectangular dielectric waveguide enclosed by a large PEC
box with the proposed variational analysis. The aspect ratio is set to

(a) (b) (c) (d)

Figure 3. Examples of eigenmodes in a circularly cylindrical
waveguide. (a) TM01. (b) TE(1)

21 . (c) TE(2)
21 . (d) TE01.

Figure 4. kza-k0a diagram
for guided modes in a circularly
cylindrical waveguide.

Figure 5. Dispersion curves
for the lowest few propagating
modes in a rectangular dielectric
waveguide.
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2, and the permittivity is εr = 2.25. The results obtained by our FEM
method agree well with those calculated by FDM [9] and Goell [37], as
shown in Figure 5. Here, parameters Ps and B are defined as

Ps =
k2

z − k2
0

k2
1 − k2

0

, (35a)

B =
b

π

√
k2

1 − k2
0, (35b)

respectively.

3.3. Triple-conductor Stripline

The geometry of a multilayered triple-conductor stripline is shown
in Figure 6, where we set ε1 = ε3 = 9.7ε0, ε2 = 4ε0, w/h = 1.0,
s/h = 0.1, and d = h. The dispersion curves obtained by the proposed
FEM are in good agreement with those calculated by FDM [9] and by
Yang et al. [38], as shown in Figure 7. The effective permittivity is
computed as simple as

εeff =
k2

z

k2
0

. (36)

Figure 6. Triple-conductor
stripline.

Figure 7. Dispersion curves for
the triple-conductor stripline.

3.4. Dual-plate Triple Microstrip Structure

We analyze a dual-plate triple microstrip line as shown in Figure 8,
with εx1 = εx2 = 9.4ε0, εy1 = εy2 = 11.6ε0, εz1 = εz2 = 9.4ε0,
h = 4.0mm, a = 10.0mm, and s = 2.0mm. The dispersion curves
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Figure 8. Dual plate triple
microstrip structure.

Figure 9. Dispersion curves for
the dual plate triple microstrip
structure.

Table 2. Normalized propagation constants computed by FDM and
FEM.

Frequency (GHz) FDM FEM Difference (%)
6 3.2321 3.2294 0.0835
12 3.2972 3.2949 0.0698
18 3.3337 3.3315 0.0660
24 3.3591 3.3571 0.0595
30 3.3795 3.3777 0.0533

computed by the proposed method and by the FDM [9] are in good
agreement, as shown in Figure 9.

When some off-diagonal components in εs are introduced (εxy1 =
εyx1 = 2.0ε0), the normalized propagation constants kz/k0 for mode I
are computed by both the proposed FEM and Radhakrishnan’s FDM,
where good agreements are shown in Table 2.

With a typical finite element discretization, the numbers of
unknowns in the waveguide problems (from Section 3.3 to 3.6) are
in the order of 103 to 104, which are similar to those generated in
Radhakrishnan’s publication [9]. The resulted generalized eigenvalue
problems can be easily solved with the conventional eigensolvers such
as Lanczos and Arnoldi methods. The MATLAB embedded ARPACK
is applied to these problems, and the CPU times are only a few minutes
even for a small computer.
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4. CONCLUSIONS

In this paper, a differential forms inspired discretization for variational
finite element analysis of inhomogeneously loaded waveguides is
proposed. In the variational expression which involves transverse fields
only, the electric field Es and magnetic field Hs are expanded with
curl-conforming RWG’s and curl-conforming BC’s, respectively, while
the electric displacement field Ds and magnetic flux density Ba

s are
expanded with divergence-conforming BC’s and divergence-conforming
RWG’s, respectively. The DoFs of Ds and Ba

s are connected to those of
Es and Hs by the Galerkin’s discrete Hodges and the Gramian matrix.
By using the sparse approximate inverse of the Gramian matrix, the
resultant eigensystem involve sparse matrices only, which can be easily
solved with conventional eigensolvers. Besides, this work offers useful
insight that differential forms may serve as precise design rules for
discretization in complicated variational problems.

APPENDIX A. SPARSE APPROXIMATE INVERSE

Matrix [A] has a good sparse approximate inverse [M] provided that
most entries in [A]−1 are relatively small. An approach to finding [M]
is to minimize

‖[A][M]− [I]‖2
F =

N∑

k=1

‖([A][M]− [I]) {eα}‖2
2 , (A1)

where the subscript F denotes the Frobenius norm, and {eα} is a
column vector satisfying {eα}t = (0, . . . , 0, 1, 0, . . . , 0) where the α-th
entry is 1. We cast such a problem into N independent least squares
problems as

min
{Mα}

‖[A]{Mα} − {eα}‖2 , α = 1, . . . , N, (A2)

where {Mα} is the α-th column of [M]. The above holds since the
columns of [M] are independent of one another.

The procedure to compute {Mα} is as follows [36]: First, one needs
to prescribe a sparsity pattern for {Mα}. In this work, we assume that
the sparse approximate inverse of [G] has the same sparsity pattern
of [G] or [G]2. Next, we let J be the set of indices j such that the
j-th entry of column vector {Mα}j 6= 0. We denote the reduced vector
{Mα}J by {Mα}. We let I be the set of indices i such that [A]iJ is
not identically zero. We denote the submatrix [A]IJ as [A], and {eα}I
as {eα}, respectively. Hence, solving (A2) is equivalent to solving

min
{Mα}

∥∥[A]{Mα} − {eα}
∥∥

2
. (A3)



Progress In Electromagnetics Research, Vol. 143, 2013 757

If the n1 × n2 matrix [A] is full rank ([A] is nonsingular), we have

[A] = [Q]
[
[R]
[0]

]
, (A4)

which is the QR decomposition for [A]. Let {c} = [Q]t{eα}, we can
obtain {

Mα

}
= [R]−1{c}1:n2 . (A5)

The sparse approximate inverse [M] can be improved by
augmenting its sparsity structure. More detail can be found in [36].
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