Vol. 57
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-11-21
Field Measurements Within a Large Resonant Cavity Based on the Perturbation Theory
By
Progress In Electromagnetics Research B, Vol. 57, 1-20, 2014
Abstract
Due to the sensitivity of the field distribution within a resonant cavity to the presence of an object, conventional measurement techniques employing a probe suffer from a limited accuracy. Therefore we propose a new measurement technique of the electric field distribution that avoids the use of a probe. Based on the perturbation theory, it consists of a measure of the cavity resonant frequency variation while displacing a small perturbing object within the cavity. The choice of the perturbing object shape, dimension and material is discussed with the help of simulation and measurement results in a canonical case. The case of reverberation chamber equipped with a mode stirrer is also considered, as well as the insertion of a metallic box within the cavity. Our measurement setup is very low-cost, simple to set up and to use, and adapted to any cavity geometry.
Citation
Mohamed Nasserdine, Stephanie Mengue, Christophe Bourcier, and Elodie Richalot, "Field Measurements Within a Large Resonant Cavity Based on the Perturbation Theory," Progress In Electromagnetics Research B, Vol. 57, 1-20, 2014.
doi:10.2528/PIERB13100101
References

1. Kildal, P.-S., K. Rosengren, J. Byun, and J. Lee, "Definition of effective diversity gain and how to measure it in a reverberation chamber," Microwave and Optical Technology Letters, Vol. 34, No. 1, 56-59, Jul. 2002.
doi:10.1002/mop.10372

2. Hatfield, M. O., M. B. Slocum, E. A. Godfrey, and G. J. Freyer, "Investigations to extend the lower frequency limit of reverberation chamber," Proc. IEEE Int. Symp. Electromagn. Compat, Vol. 1, 20-23, 1998.

3. Hill, D. A., "Plane wave integral representation for fields in reverberation chambers," IEEE Trans. Electromagn. Compat., Vol. 40, No. 3, 209-217, Aug. 1998.
doi:10.1109/15.709418

4. Arnaut, L. R., "Effect of local stir and spatial averaging on measurement and testing in mode tuned and mode-stirred reverberation chambers," IEEE Trans. Electromagn. Compat., Vol. 43, No. 3, 305-325, Aug. 2001.
doi:10.1109/15.942603

4. Hill, D. A., Effect of local stir and spatial averaging on measurement and testing in mode tuned and mode-stirred reverberation chambers , Vol. 43, No. 3, 305-325, IEEE Trans. Electromagn. Compat. , Aug. 2001.

5. Hill, D. A., Electromagnetic Fields in Cavity Deterministic and Statistical Theories, John Wiley&Sons, 2009.
doi:10.1002/9780470495056

6. Richmond, J. H. and T. E. Tice, "Probes for microwave near-field measurements," IRE Trans. Microwave Theory and Techniques, 32-34, Apr. 1955.

7. Justice, R. and V. H. Rumsey, "Measurement of electric field distributions," IRE Trans. Antennas and Propagation, 177-180, Oct. 1955.
doi:10.1109/TAP.1955.1144315

8. Memarzadeh-Tehran, H., J. J. Laurin, and R. Kashyap, "Optically modulated probe for precision near-field measurements," IEEE Trans. Instrumentation and Measurement , Vol. 59, No. 10, 2755-2762, Oct. 2010.
doi:10.1109/TIM.2010.2045552

9. Abou-Khousa, M. A., M. T. Ghasr, S. Kharkovsky, D. Pommerenke, and R. Zoughi, "Modulated elliptical slot antenna for electric field mapping and microwave imaging," IEEE Trans. Antennas and Propagation, Vol. 59, No. 3, 733-741, Mar. 2011.
doi:10.1109/TAP.2010.2103024

10. Rosengren, K., P. S. Kildal, C. Carlson, and J. Carlsson, "Characterization of antennas for mobile and wireless terminals by using reverberation chambers: Improved accuracy by platform stirring," Microw. Opt. Technol. Lett., Vol. 30, No. 20, 391-397, Sep. 2001.
doi:10.1002/mop.1324

11. Waldron, R. A., "Perturbation theory of resonant cavities," Monograph No. 373 E, The Institution of Electrical Engineers, Apr. 1960.

12. Champlin, K. S. and R. R. Krongard, "The measurement of conductivity and permittivity of semiconductor spheres by an extension of the cavity perturbation method," IRE Trans. Microwave Theory and Techniques, 545-551, Nov. 1961.
doi:10.1109/TMTT.1961.1125387

13. Van Bladel, J., Electromagnetic Fields, 2nd Ed., 251, John Wiley&Sons, Inc., 2007.
doi:10.1002/047012458X

14. Joseph, R. I., "Ballistic demagnetizing factor in uniformly magnetized cylinders," Journal of Applied Physics, Vol. 37, No. 13, 4639-4643, Dec. 1966.
doi:10.1063/1.1708110

15. Chen, D.-X., J. A. Brug, and R. B. Goldfarb, "Demagnetizing factors for cylinders," IEEE Tran. Magnetics, Vol. 27, No. 4, 3601-3619, Jul. 1991.
doi:10.1109/20.102932

16. Kobayashi, M. and Y. Ishikawa, "Surface magnetic charge distributions and demagnetizing factors of circular cylinders," IEEE Trans. Magnetics, Vol. 28, No. 3, 1810-1814, May 1992.
doi:10.1109/20.141290

17. Ao, C. O., K. O'Neill, and J. A. Kong, "Magnetoquasistatic response of conducting and permeable prolate spheroid under axial excitation," IEEE Trans. Geoscience and Remote Sensing, Vol. 39, No. 12, 2689-2701, Dec. 2001.
doi:10.1109/36.975003

18. Jackson, J. D., Classical Electrodynamics, 3rd Ed., John Wiley&Sons, 1999.

19. Slater, J. C., "Microwave Electronics," Rev. Mod. Phys., Vol. 18, No. 4, 441-512, Oct. 1946.
doi:10.1103/RevModPhys.18.441

20. Spencer, E. G., R. C. LeGraw, and amd F. Reggia, "Measurement of microwave dielectric constants and tensor permeabilities of ferrite spheres," Proc. of the IRE, 790-800, Jun. 1956.
doi:10.1109/JRPROC.1956.274996

21. Maier, L. C. and J. C Slater, "Field strength measurements in resonant cavities," Journal of Applied Physics, Vol. 23, No. 1, 68-77, Jan. 1952.
doi:10.1063/1.1701980

22. Scaglia, C., "Field-strength measurements by perturbation theory," Electronic Letters, Vol. 1, No. 7, 200-201, Sep. 1945.
doi:10.1049/el:19650184

23. Laurent, D., O. Legrand, P. Sebbah, C. Vanneste, and F. Mortessagne, "Localized modes in a finite-size open disordered microwave cavity," Physical Review Letters, Vol. 99, 253902, 2007.
doi:10.1103/PhysRevLett.99.253902

24. Kuhl, U., E. Persson, M. Barth, and H.-J. Stockmann, "Mixing of wavefunctions in rectangular billards," European Physical Journal B, Vol. 17, 253-259, 2000.

25. Dorr, U., H. J. Stockmann, M. Barth, and U. Kuhl, "Scarred and chaotic field distributions in a three-dimensional Sinai-microwave resonator," Phys. Rev. Lett., Vol. 80, No. 5, 1030-1033, Feb. 1998.
doi:10.1103/PhysRevLett.80.1030

26. Som, S., S. Seth, A. Mandal, and S. Ghosh, "Bead-pull measurement using phase-shift technique in multi-cell elliptical cavity," Proceedings of IPAC2011, 280-282, Sep. 2011.

27. Orjubin, G. and M. F. Wong, "Experimental determination of the higher electric field level inside an overmoded reverberation chamber using the generalized extreme value distribution," Ann. Telecomm., Vol. 66, No. 7--8, 457-464, 2011.
doi:10.1007/s12243-011-0259-6

28. Orjubin, G., E. Richalot, S. Mengue, M. F. Wong, and O. Picon, "On the FEM modal approach for a reverberation chamber analysis," IEEE Trans. Electromagn. Compat., Vol. 49, No. 1, 76-85, Feb. 2007.
doi:10.1109/TEMC.2006.888187

29. Hill, D. A., M. T. Ma, A. R. Ondrejka, B. F. Riddle, M. L. Crawford, and R. T. Johnk, "Aperture excitation of electrically large, lossy cavities," IEEE Trans. Electromagn. Compat., Vol. 36, No. 3, 169-178, Aug. 1994.
doi:10.1109/15.305461

30. Kuhl, U., R. Hohmann, J. Main, and H.-J. Stockmann, "Resonance widths in open microwave cavities studied by harmonic inversion," Phys. Rev. Lett., Vol. 100, No. 25, 254101, Jun. 2008.
doi:10.1103/PhysRevLett.100.254101