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Field Measurements within a Large Resonant Cavity Based on the
Perturbation Theory
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Abstract—Due to the sensitivity of the field distribution within a resonant cavity to the presence
of an object, conventional measurement techniques employing a probe suffer from a limited accuracy.
Therefore we propose a new measurement technique of the electric field distribution that avoids the use
of a probe. Based on the perturbation theory, it consists of a measure of the cavity resonant frequency
variation while displacing a small perturbing object within the cavity. The choice of the perturbing
object shape, dimension and material is discussed with the help of simulation and measurement results
in a canonical case. The case of reverberation chamber equipped with a mode stirrer is also considered,
as well as the insertion of a metallic box within the cavity. Our measurement setup is very low-cost,
simple to set up and to use, and adapted to any cavity geometry.

1. INTRODUCTION

Precise field measurements are difficult to attain within a resonant cavity. Indeed, the field distribution
within the cavity is very sensitive to the insertion of an object in its enclosure. Thus the measurement
antenna or the field probe disturbs the fields; this results in measurement errors.

The present work has been performed in the context of studies on large resonant cavities of
moderate quality factor that are reverberation chambers. A reverberation chamber (RC) is a conductive
enclosed cavity used for electronic equipment susceptibility or immunity test as well as for antenna
characterization [1]. It is used above a minimal frequency [2] from which the statistical field uniformity
and isotropy are reached [3]. To insure its adequate performance and calibrate it before performing
some tests on a device, some field measurements within the cavity are necessary. More specifically, our
measurements performed at low frequencies aimed to better understand the effect of the cavity shape
and of the device under test on the field distribution.

The measurement limitations in reverberation chambers were already studied by Arnaut [4] with
the spatial averaging effect of the nonzero antenna aperture width and the influence of the antenna
itself on the fields. This last influence will be brought to the fore in Section 2 using measurement
results. To increase the measurement precision, we propose in this paper a measurement technique
based on the perturbation theory [5], which avoids the use of a probe within the working volume of the
reverberation chamber. After the presentation of the underlying theory in Section 3, the measurement
setup is described in Section 4. It is very low-cost and simple to establish and to use. The sizing of
this measurement setup is based on first simulation and measurement results performed in a canonical
case in Section 5. While performing measurements first in the analytical case of the empty cavity and
then in a cavity equipped with a mode stirrer or a metallic box, we show the ability of this technique
to determine the field distribution within a complex cavity. Finally, the method to determine the mode
electromagnetic energy is presented and validated in Section 6, and some perspectives are presented to
extend the proposed approach to higher frequency measurements.
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2. FIELD PERTURBATION DUE TO THE ANTENNA

To simply illustrate the perturbation induced by the measurement system within the resonant cavity,
the analytical case of the empty parallelepipedic metallic cavity is considered. We study here the TE061
mode. The electric field is polarized along x-axis, and the variation of Ex amplitude, analytically known,
is given by:

Ex(x, y, z) ∝ cos
(mπ

W
x
)

sin
(nπ

L
y
)

sin
(pπ

H
z
)

(1)

with m = 0, n = 6, p = 1.
Measurements are performed within a cavity made of aluminium of dimensions W = 0.785m along

x-axis, L = 0.985m along y-axis, and H = 0.995m along z-axis (Fig. 1). For these dimensions, the
analytical resonant frequency of the TE061 mode is of 925.44 MHz. Its excitation is performed with a
single patch antenna placed at a cavity corner and connected to a RF source situated outside the cavity
through a fitted SMA connector.
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Figure 1. Parallelepipedic cavity loaded by a dipole antenna. Suction pads in green.

A dipole antenna is dedicated to field measurements within the cavity volume. This antenna of
length 16 cm is matched at the measurement frequency, i.e., when the antenna is placed in an anechoic
chamber, its |S11| parameter is under −20 dB from 920 MHz to 930 MHz. It is placed along (x = W/2,
z = H/2) axis, this height corresponding to a maximum of Ex amplitude. Two nylon wires parallel to
y-axis (“fixation wires” in Fig. 1), fixed at the cavity walls using four suction pads, permit to maintain
the dipole antenna parallel to x-axis. A third nylon wire (“positioning wire”) is used for the positioning
of the antenna along the fixation wires. This last wire goes out the cavity through small holes initially
dedicated to SMA connectors for measurement purpose. A thin cylinder (in green) fixed to the wire
and a ruler placed on the cavity permit to control outside the cavity the antenna position within the
cavity. The dipole antenna is connected to a power meter situated outside the cavity through a fitted
SMA connector.

2.1. Measurements by the Dipole Antenna

For this first measurement, the metallic cavity is excited by the patch antenna connected to a RF source
at the frequency 925MHz. The dipole antenna is connected to a power meter to determine the received
power (Fig. 1). A measurement is performed for each position of the dipole antenna along y-axis with
a 2 cm-step.

Figure 2 compares the measured electric field amplitude with the theoretical one calculated at the
same positions. Both amplitudes are normalized to the unit. To understand the discrepancy between
both amplitudes, the influence of the dipole antenna position on the cavity resonant frequency has been
examined.
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Figure 2. Variation of the normalized measured electric field and the resonant frequency with the
dipole antenna position; comparison to the theoretical electric field amplitude.

2.2. Resonant Frequency Variation

The patch antenna is now linked to a Vector Network Analyser (VNA) and the dipole antenna to a
matched load connected outside the cavity (so that the antenna cable remains within the cavity). For
each position of the dipole antenna along y-axis, the resonant frequency of the cavity is determined from
the measurement of the reflection coefficient on a small bandwidth: the resonant frequency is associated
to the minimal value of S11.

The amplitude of the reflection coefficient is not given here. However, its minimal value,
corresponding to the reflection phenomenon, strongly varies with the dipole antenna position, and
for a few positions no resonance can be detected. At these positions, no resonant frequency is thus
given.

The variation of the resonant frequency with the dipole antenna position is depicted in Fig. 2. First
of all, it can be noticed that the resonant frequency variation is similar to the theoretical amplitude
curve. The measured frequency variations are however not symmetrical about the cavity centre due
to the presence of the patch excitation antenna and of the dipole antenna cable upsetting the cavity
symmetry. This relationship between the resonant frequency variation and the field amplitude, explained
in Section 3, will be used in our measurement setup.

The excursion of the resonant frequency is of 2 MHz around 925 MHz. The field magnitude variation
around the resonant frequency f0 follows the expression [5]:

∣∣∣∣
E(f)
E(f0)

∣∣∣∣ =
1√

1 +
[
2Q

(
f − f0

f0

)]2
(2)

In order to determine the Q quality factor of the TE061 resonant mode, the reflection coefficient
has been measurement in absence of the dipole antenna; a Q factor of 341 has been deduced from the
measured resonance width.

To understand the influence of the resonant frequency variation on the measured field amplitude at
925MHz, we will consider to extreme cases. We first of all examine the zone around the 5th theoretical
electric amplitude peak. The highest measured resonant frequency fmax = 926.01MHz is attained at
y = 770mm. For a resonant frequency f0 of 926.01 MHz and an excitation frequency f of 925 MHz, the
ratio of Eq. (2) is of 0.802. This value represents the impact of the resonant frequency perturbation
on the measured field amplitude. The measured field amplitude at this position is of 0.411 against a
theoretical amplitude of 0.827. Thus the large frequency difference between the resonant frequency and
the excitation frequency coincides with a large difference between the theoretical and measured field
amplitude.
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As a contrary, at y = 410mm corresponding to the third theoretical amplitude peak (unitary
theoretical amplitude), the measured resonant frequency is of 925.138 MHz. In this case, the ratio of
Eq. (2) is of 0.995. The measured field amplitude at this position also corresponds to the maximal
measured field amplitude. Thus, the maximal field amplitude is obtained when a theoretical amplitude
peak coincides with a resonant frequency close to the excitation frequency. This is the only area where
the match between the resonant frequency and the excitation one is concomitant with a maximum of the
mode field amplitude. As a consequence, the measured amplitude in this area is maximal. The measured
field amplitude is slightly lower at the other peaks with a resonant frequency far from 925MHz.

Despite a clear correlation between the measured frequency shift and the discrepancy between the
theoretical and measured field amplitudes, the induced frequency shift is not the only cause of field
perturbation. Other phenomena are also involved:

• Because of the proximity of the lower and higher resonant modes, the cavity may switch from one
mode to another during the antenna translation. Thus 925MHz corresponds to the resonance of
TE061 mode or of the higher order mode depending on the position of the antenna.

• The presence of the dipole antenna induces a local field perturbation.
• Coupling phenomena between the patch and the dipole antennas as well as the influence of the

vicinity of cavity walls on the dipole antenna response can also have in impact on the measurement
results.

• Due to the length of the dipole antenna, the measurement is non-local and results from a global
contribution of the field along the antenna [4]. This phenomenon is however not significant for the
TE061 mode due to the invariance of the electric field along y-axis.

Due to the perturbation induced on the field by the measurement system itself, an indirect
measurement method will be employed. The field disturbance induced by the measurement setup itself
is not specific to resonant cavities, as this problem is also of importance for near-field measurements. In
this case, an indirect measurement method, called the modulated scatterer technique (MST) [6, 7], has
been developed to limit the field perturbation. For that purpose, the transmission line from the receiving
antenna to the measuring instrument is eliminated, the signal picked-up by the probe placed in the near-
field of the studied device being reradiated to a distant antenna. Very accurate results are obtained
using the MST [8, 9]. However, this technique is not applicable in a resonant cavity. In this case, the
probe radiation is not the same as in free space, and the transfer function between two antennas highly
varies with their location within the cavity [10]. Therefore, another indirect measurement technique is
proposed in this paper to limit the influence of the measurement setup on the field distribution.

3. PERTURBATION TECHNIQUE

In the previous part, the high sensitivity of the cavity resonant frequencies to the position of an object,
in this case the dipole antenna, has been put into relief. The perturbation technique takes advantage of
this resonant frequency sensitivity to the insertion of an object within the cavity. After the presentation
of the underlying theory, we will discuss the choice of the inserted perturbing object before presenting
the possible applications of this theory.

3.1. Perturbation Theory

We consider a resonant cavity of volume V composed of vacuum. At the resonant frequency f0, the
electric and magnetic fields within the cavity are E0 and H0. It can be noticed that the phase difference
between electric and magnetic fields is equal to π. The associated total averaged electromagnetic energy
W0 of the cavity is given by:

W0 = ε0

∫

V

∥∥∥ ~E0

∥∥∥
2
dv = µ0

∫

V

∥∥∥ ~H0

∥∥∥
2
dv (3)

The perturbation technique consists of introducing an object within this resonant cavity to observe
the perturbation induced on the resonant frequency. According to [5, 11, 12], the insertion of a small
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dielectric or metallic object within a resonant cavity results in a frequency shift of the resonant frequency,
given by:

f2 − f2
0

f2
0

=

µ0

∫

Vp

~H0 · ~Mdν −
∫

Vp

~E0 · ~Pdν

2W0
(4)

where f is the resonant frequency obtained with the perturbation, and Vp is the perturbation volume.
P and M are the electric and magnetic polarization densities induced in the inserted object. We can
notice that the resonant frequency variation is independent of the total energy within the cavity, so
that the presented measurement technique only leads to the relative variation of electric and magnetic
fields. We will later see how W0 can be determined in measurements.

For a small volume Vp of the inserted object, the electric and magnetic fields of the unperturbed
cavity, E0 and H0, are nearly constant throughout its volume. Eq. (4) can thus be approximated [5].
By neglecting ∆f in (f +∆f) one finds:

∆f

f0
=

µ0

⇀

H0 · ~Mm − ⇀

E0 ·
⇀

P e

2W0
(5)

where ∆f = f − f0 and Pe and Mm are the quasi-static electric and magnetic dipole moments induced
in the perturbing object by the cavity modal fields (E0, H0). These moments depend on the object
shape and material, and can be expressed analytically in some canonical cases, as for the homogeneous
spheroidal object.

3.2. Spheroidal Sample

In this paper, the chosen perturbing objects are of spherical and cylindrical shapes. Whereas electric
and magnetic polarization densities are uniform within a homogeneous spheroid [13], it is not the case
for a cylindrical object [14–16]. To avoid this problem and keep an analytical expression of the electric
and magnetic dipole moments, the cylinder will be approximate as a spheroid whose two minor axes are
equal and very smaller than the major axis [13, 17]. Both perturbing object shapes are thus particular
cases of prolate spheroids with b = c and a ≥ b (Fig. 3).
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Figure 3. Prolate spheroid sample (a) within a uniform external (b) electric or (c) magnetic field.

Let us consider a prolate spheroid sample, of relative effective (potentially complex) permittivity ε∗r
and relative permeability µr, within external electric and magnetic fields as shown in Fig. 3. As already
mentioned, due to its small dimensions, the electric and magnetic fields of the unperturbed cavity, E0

and H0, are supposed to be constant throughout its volume. These exterior fields induce a polarization
charge and a current on the spheroid surface.

The electric and magnetic polarization factors of a prolate spheroid depend on the field source
orientation. The dielectric polarization density of a dielectric spheroid sample is [13]:

~P = ε0 ¯̄pe · ~E0 (6)
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with the electric polarization dyadic:

¯̄pe =
(ε∗r − 1)

1 + (ε∗r − 1)l⊥
~ux~ux+

(ε∗r − 1)
1 + (ε∗r − 1)l⊥

~uy~uy+
(ε∗r − 1)

1 + (ε∗r − 1)l//
~uz~uz (7)

where l// and l⊥, the electric polarization factors induced by the source field parallel or orthogonal to
the major axis, are given by:





l// =
1− e2

e2

[
1
2e

ln
(

e + 1
1− e

)
− 1

]

l⊥ =
1− e2

2e2

[
1

1− e2
− 1

2e
ln

(
e + 1
1− e

)] (8)

and e =
√

1− (
c
a

)2 is the eccentricity of the ellipsoid.
Similarly, the magnetic polarization density can be written as:

~M = ¯̄pm · ~H0 (9)

with the magnetic polarizability dyadic:

¯̄pm =
(µr − 1)

1+(µr−1)l⊥
~ux~ux+

(µr − 1)
1+(µr−1)l⊥

~uy~uy+
(µr − 1)

1+(µr−1)l//
~uz~uz (10)

with magnetic polarization factors equal to the electric ones.
By integrating P and M on the volume V of the spheroid, we obtain the electric and magnetic

moments:
~Pe = V ~P and ~Mm = V ~M (11)

where V = (4/3)π abc = (4/3)π ab2.
We finally find the relationship between the frequency shift and the sample material properties as

well as the electric and magnetic fields at the location of the perturbing spheroid:

∆f

f0
=

µ0V

2W0

⇀

H0 ·
[

(µr − 1)
1 + (µr − 1) l⊥

H0x~ux +
(µr − 1)

1 + (µr − 1) l⊥
H0y~uy +

(µr − 1)
1 + (µr − 1) l//

H0z~uz

]

− ε0V

2W0

~E0 ·
[

(ε∗r − 1)
1 + (ε∗r − 1) l⊥

E0x~ux +
(ε∗r − 1)

1 + (ε∗r − 1) l⊥
E0y~uy +

(ε∗r − 1)
1 + (ε∗r − 1) l//

E0z~uz

]
(12)

with E0i and H0i the electric and magnetic field components along i-axis.

3.3. Thin Cylindrical Sample

A thin cylinder of radius r and height h along z-axis is approximated as a prolate spheroids with
b = c = r and a = h/2. In order to quantify the influence of the field components on the frequency
shift, we compare the coefficients of the electric polarization dyadic in Eq. (7) using the ratio R defined
as follows:

R =
pz

px,y
=

1 + (ε∗r − 1)l⊥
1 + (ε∗r − 1)l//

(13)

This ratio increases with the relative permittivity amplitude and the ellipsoid eccentricity (Fig. 4). This
implies that, for a thin cylinder of high permittivity, the contribution of the electric field components
orthogonal to the cylinder axis is negligible in comparison to the one of the component parallel to
the cylinder axis. In the presented measurement results (Section 5.1.3), a cylinder of aluminium with
c/a = 0.0174 is used; at the measurement frequency of 925 MHz, the associated R ratio reaches 440, so
that the parallel electric field component can easily be extracted.

Both electric and magnetic fields are influent on the resonant frequency. The term related to the
magnetic field increases with the sample permeability, meaning that the magnetic field influence is less
important with a paramagnetic metal (as aluminium, µr ≈ 1) than with a ferromagnetic one (as iron,
µr À 1). For this reason, our measurements will be performed with an aluminium cylinder so that the
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Figure 4. Variation of ratio R versus real permittivity and c/a ratio.

magnetic field remains weakly influent on the resonant frequency. As a consequence, the measure of the
resonant frequency perturbation leads to the electric field amplitude along the cylinder axis.

Using Eq. (12), we find the relationship between the frequency shift and the electric field component
along z-axis at the location of the cylinder as well as the cylinder permittivity:

∆f

f0
≈ − ε0V

2W0

(ε∗r − 1)
1 + (ε∗r − 1) l//

E2
0z (14)

3.4. Spherical Sample

In the spherical case, the eccentricity vanishes. From the obvious formulae (Eq. (8)), for a dielectric
sphere, the electric and magnetic polarization factors are both equal to 1/3 [5].

For a sphere of radius r, placed in initially uniform electric field E0 and magnetic field H0, the
associated electric and magnetic dipole moments can be calculated as [13, 18]:

~Pe = 4πr3ε0
ε∗r − 1
ε∗r + 2

~E0 (15)

~Mm = 4πr3 µr − 1
µr + 2

⇀

H0 (16)

Finally, by taking the phase shift between E0 and H0 into account, we find:

δf

f0
= −4π · r3

W0

{
µ0

µr − 1
µr + 2

∥∥∥ ~H0

∥∥∥
2

+ ε0
ε∗r − 1
ε∗r + 2

∥∥∥ ~E0

∥∥∥
2
}

(17)

In this formula, the effective permittivity and the frequencies are complex. The imaginary part of the
resonant frequency, linked to the cavity quality factor [19], is not discussed in this paper.

This relation between the frequency shift and the field amplitudes is a function of the sphere
properties i.e., its radius, its permittivity and its permeability. We will examine separately the cases of
the metallic and the dielectric inserted object.

In the case of a metallic inserted object, the amplitude of the complex effective permittivity is very
large |ε∗r| À 1 and Eq. (17) becomes:

δf

f0
= −4π · r3

W0

{
µ0

µr − 1
µr + 2

∥∥∥ ~H0

∥∥∥
2

+ ε0

∥∥∥ ~E0

∥∥∥
2
}

(18)

As for the cylindrical perturbing object, the metallic spheres used in measurements are
paramagnetic, as the extraction of the electric field amplitude is easier in this case.

We can also notice that the frequency shift increases with the sphere radius. It implies that the
resonant frequency variation will be easier to detect while increasing the sphere size. However, the
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hypothesis of a small perturbing object has to be verified, and the increase of the sphere radius results
in an integration effect on the fields values. The simulations and measurements presented in Section 5
for different sphere radii have been of help to find a good compromise on the sphere radius.

If a dielectric sphere is chosen, the relative permeability being equal to one, the coefficient before
the magnetic field amplitude vanishes and Eq. (17) becomes:

δf

f0
= −4π · r3

W0
ε0

ε∗r − 1
ε∗r + 2

∥∥∥ ~E0

∥∥∥
2

(19)

In this case the frequency shift is only linked to the electric field and not to the magnetic field, so
that the determination of the electric field amplitude is easier. As the modulus of the frequency shift
increases with the permittivity amplitude, it remains lower with a dielectric sphere than with a metallic
one (for the same sphere radius), and the use of a high permittivity material is recommended for a
precise extraction of the field amplitude variation.

In the measurement setup presented in the following, metallic and dielectric spheres have been
used. Simulations as well as measurements presented in Section 5 confirm the remarks drawn here.

3.5. Applications of the Perturbation Theory

According to Eq. (12), the shift of the resonant frequency is linked to the inserted sample material
properties. The perturbation theory is thus most widely used to characterize the inserted object
properties [12, 20]. In this paper, we will take advantage of the sensitivity of the resonant frequency to
extract the field properties [21, 22].

The relationship between the resonant frequency variation and the fields within the unperturbed
cavity will be used to obtain the electric field distribution through resonant frequency measurements
by changing the perturbation location. It has to be mentioned that some measurement setups based
on the perturbation theory have already been developed to measure the field distribution within 2D
and 3D microwave billiards [23–25] as well as on the central axis of a in superconducting RF cavities
for accelerating structures [26]. All the measured cavities presented a very high quality factor which
facilitated a precise detection of the resonant frequency; indeed, a high quality factor results in a sharp
variation of the measured reflection coefficient and limits the mode overlap.

Our aim in this paper is to adapt this measurement technique to the case of a large resonant
cavity of arbitrary shape and of moderated quality factor. To this end, the suited parameters of the
measurement setup are investigated and the measurement accuracy is examined.

4. MEASUREMENT SETUP

The measurement setup is similar to the one presented in Section 2, while replacing the dipole antenna
by the perturbing object of spherical or cylindrical shape. The fixation wires are only necessary with
the cylindrical sample, to maintain it parallel to x-axis. It has to be noticed that the cylinder could also
be oriented along y- or z-axes, by an appropriate choice of the sample holes to pass the positioning wire.
Fig. 5 shows a sketch of the measurement system with spherical and cylindrical perturbing objects,
these objects being in practice used separately.

The cavity resonant frequency is obtained from the reflection coefficient measurement, as it
corresponds to its minimum value. The measurement procedure consists of detecting the resonant
frequency first for the empty cavity and then with the perturbing object. By moving the inserted
object and measuring the resonant frequency associated to each position, we can extract the electric
field amplitude variation along the covered path.

Except the VNA and the excitation antenna, our measurement setup only requires very common
low-cost objects. Suction pads are used to fix the wires, so that the measurement line position and
orientation can easily be changed; measurements can thus be performed everywhere within the cavity.
The setup flexibility also concerns the cavity shape, as it could be adapted to every cavity as soon
as two small holes permit the positioning wire to come through the cavity walls, but small holes are
classically present in order to insert connectors for measurement purposes. Moreover, our measurement
setup presents the advantages of being simple to put in and to use, and measurements are rather rapid
thanks to an easy displacement of the perturbing object.
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Figure 5. Schematic view of the measurement system with spherical and cylindrical objects inside the
cavity.

5. MEASUREMENT RESULTS

To validate our measurement technique and choose the perturbing objects adapted to our resonant
cavity, measurements are firstly performed within the empty parallelepipedic cavity, the field expressions
being analytically known in this simple case. Measurement results are then presented for the cavity
loaded by a mode stirrer and a metallic box.

5.1. Validation with the Empty Cavity

Two resonant modes of the empty parallelepipedic cavity will be considered: the TE021 and the TE061
modes. Before inserting a perturbing object, we first measured the resonant frequencies of the empty
cavity excited by the patch antenna. From the position of the minimum reflection coefficient, we deduced
measured resonant frequencies of 339.04 MHz for the TE021 mode and 923.78MHz for the TE061 mode.
In comparison to the analytical resonant frequencies (339.60MHz for the TE021 mode and 925.44 MHz
for the TE061 mode), the error is respectively of 0.17% and 0.18%. This shows that the patch excitation
antenna only slightly perturbs these frequencies.

Several perturbing objects of different dimensions and materials are alternatively placed along the
measurement line (x0 = W/2, z0 = H/2), on which electric and magnetic fields, respectively polarized
along x- and z-axes, vary as:

E0x(x, y, z) ∝ sin
(

2π

L
y

)
and H0z(x, y, z) ∝ cos

(
2π

L
y

)
(20)

The variation of the cavity resonant frequency versus the perturbing object position will be
extracted from reflection coefficient measurements performed at each object position.

For validation purposes, the measurement setup, i.e., the cavity loaded by a perturbing object, is
simulated using HFSS software, and the cavity resonant frequency is numerically determined for the
same object positions as in measurements.

5.1.1. Measurements with a Metallic Sphere

In order to determine the adapted sphere dimension, two metallic spheres of different radii will be used.
A sphere of aluminium of radius r = 25 mm is firstly used as perturbation in the measurement setup.
For each position of the sphere, the reflection coefficient of the cavity is measured using the Vector
Network Analyser. Fig. 6 presents one of the measured cavity reflection coefficient around 339MHz for
a fixed position of the sphere. The resonant frequency, corresponding to the minimum of this curve,
can easily be determined. In the presented case corresponding to a sphere placed at y = 6 cm, it is of
339.010MHz. The variation of the resonant frequency with the sphere position is presented in Fig. 7.
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Knowing the resonant frequencies of the empty and loaded cavities, one determines the frequency shift
(Fig. 8). The same procedure is followed with an aluminium sphere of radius 15mm (Fig. 8).

In measurement as well as in simulation, the increase of the frequency excursion with the sphere
radius is noticeable. The very small frequency variation obtained with the smallest sphere makes this
curve more sensitive to the measurement noise. In our setup, the accuracy of the resonant frequency
measurement is limited by the low quality factor of our cavity. Indeed, this parallelepipedic cavity built
by our team presents for the studied resonant mode a quality factor around 600 for the TE021 mode.
In resonant cavities presenting much higher quality factors, more precise results could be expected with
a sphere of small radius.

Similar frequency variations are obtained in simulation and measurement, with a sign change of
the frequency shift for both spheres. The measurement line portion on which the frequency shift is
positive increases with the sphere radius: the sign change occurs with r = 15 mm from y = 408 mm to
579, whereas for r = 25 mm the frequency shift is positive between y = 400 and 587 mm. According
to Eq. (18), this positive frequency shift is a consequence of the magnetic field; it can be noticed that
the maximal positive frequency shifts are obtained near the walls and at the cavity center, when the
electric field is minimum and the magnetic field is maximum. For both perturbing spheres, the maximal
amplitudes of the frequency shift correspond to negative values: it shows a preponderant influence of
the electric field over the magnetic one.

In order to easily extract the electric field amplitude from the frequency shift variation, the influence
of H-field is neglected:

δf

f0
≈ −4π · r3

W0
ε0

∥∥∥ ~E0

∥∥∥
2

(21)

The electric field amplitude is thus given by the normalized square-root of the real frequency shift
amplitude. The good concordance between simulations and measurements shows the accuracy of the



Progress In Electromagnetics Research B, Vol. 57, 2014 11

measure (Fig. 9). The effect of the sign changes of the frequency shift on the reconstruction of the
electric field amplitude is obvious as they result in parasitic arches.
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Figure 9. Normalized variations of the square-root of |Re(δf)| and of the analytical amplitude of E0x

and H0z. Measurements with metallic spheres of radii 15 mm and 25mm.

While comparing in Fig. 9 the extracted amplitudes with the analytical variations of Ex and
H0z components, one can notice that, when H0z is very small (around y = L/4 and 3L/4), the two
experimental and simulated curves follow the variation of Ex value, whereas they follow H0z curve for
low E0x values (near the walls and at the cavity centre). Thus the influence of the sphere magnetic
polarization disturbs the determination of E0 amplitude. This indicates that the aluminium spheres
are too large to be used as perturbing objects to extract the electric field. However, due to the decrease
of the frequency shift amplitude with the sphere radius, the use of a smaller perturbing sphere would
require very accurate measurements for a precise extraction of the electric field magnitude variation.
Therefore, to eliminate the magnetic field influence, measurements have been performed with a dielectric
sphere.

5.1.2. Measurements with a Dielectric Sphere

Two dielectric spheres having the same radii as the metallic ones have been used in measurements. The
first one is a sphere of radius r = 25 mm made of PVC. The relative permeability of the PVC is equal
to one, for a relative permittivity of about 3 in the considered frequency band. As water permittivity
is very high (about 80 at room temperature for the studied frequencies), the second perturbing sphere
is taken as a plastic sphere covered with wet cotton. Its radius is of 15mm.

Figure 10 depicts the variation of δf while each sphere moves along the line (x0 = W/2, z0 = H/2).
We can notice that, in both cases, the frequency shift remains negative for all the sphere positions. The
comparison between the two curves obtained shows that, the frequency shift excursion being lower with
the smallest sphere, the frequency measurement is more sensitive to the measurement noise. We also
observe that the minimal frequency shift (at the middle of the cavity) is obtained with the smallest
sphere.

To extract the electric field variation, we calculate the square-root of these frequency shifts. The
normalized curves obtained are in accordance with the variation of E0x analytical amplitude (Fig. 11).
The comparison of the experimental results obtained with the dielectric sphere with the ones relative
to the metallic sphere having the same radius (Fig. 9) clearly shows the advantage of the dielectric
material: the influence of the magnetic field disappears and the electric field amplitude is reconstructed
with a satisfying precision.

However, the relatively large radius of the first sphere (r = 25 mm) makes the measurement of
small field values difficult. The perturbation being non punctual, the frequency shift, related to the
field distribution within its volume, represents more precisely the field amplitude when the field spatial
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Figure 10. Variations of the δf while moving the dielectric sphere (r = 15 mm and 25 mm).
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Figure 11. Normalized variations of the square-root of |Re(δf)| and of the analytical amplitude of Ex.
Measurements with dielectric spheres (r = 15mm and 25 mm).

variation is slow (as at a maximum of the field amplitude, the derivative being null) as when its spatial
variation is rapid (as at a field node).

The advantage of the smallest sphere is a better detection of the electric field node. The use of
a dielectric sphere of radius 15mm is thus adapted to the electric field amplitude measurement of the
examined mode. A smaller sphere could permit a better detection of the minimal amplitudes; however
to maintain a significant frequency excursion and limit the noise influence, the use of high permittivity
dielectric material would be necessary in this case. We remain this limitation is linked to the low quality
factor of the studied cavity.

5.1.3. Measurements with a Metallic Cylinder

Measurements are now performed on the TE061 mode along y-axis, as in Section 2. Its measured
resonant frequency without any perturbing object is of 923.78MHz. As the field amplitude spatial
variation is faster than with the TE021 mode, the previously used spheres would be too large in regard
to the field variation. Therefore, in order to reduce the sample dimension along y-axis while keeping a
sufficient frequency shift, a cylindrical sample has been chosen in this case.

A cylinder of aluminium of radius 3 mm and height 11 cm has been placed parallel to x-axis along
the measurement line (x0 = W/2, z0 = H/2). As already mentioned in Section 3.3, this cylinder will
mainly disturb E0x component, so that we will be able to extract its amplitude.

Figure 12 presents the variation of the frequency shift obtained along the measurement line. It can
be noticed that the frequency shift remains negative; this shows the weak influence of the magnetic field
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Figure 12. Variations of the δf while moving the metallic cylinder (r = 3 mm and h = 11 cm).
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amplitude of E0x (continuous line). Measurements with a metallic cylinder (r = 3 mm and h = 11 cm).

on the resonant frequency perturbation. Moreover, a largers excursion of the frequency shift (about
1.5MHz) is obtained than with the previous perturbing objects of larger volumes. Fig. 13 compares
the normalized extracted E0x amplitude to the analytical one; a good concordance of the two curves is
observed.

5.2. Cavity Equipped with a Mode Stirrer

Whereas the previous results are related to a canonical case, the proposed measurement technique
is independent of the cavity geometry. To illustrate this versatility, a metallic mode stirrer is now
introduced within the previous parallelepipedic cavity (Fig. 14). It consists of a rectangular plate of
dimensions 53.8 cm× 19 cm, placed at 10 cm from the cavity bottom and rotated by 30◦ with regard to
y-axis. The excitation patch antenna remains unchanged.

As in this case the solution is no longer analytical, the cavity is simulated using HFSS software,
and the electric field amplitude obtained by simulation are compared (Fig. 15) to the ones extracted
from measurements along the line (x0 = W/2, z0 = H/2).

Measurements are performed with the spherical dielectric object of radius r = 15 mm placed along
the observation line. A single excitation patch antenna is considered and the resonant frequency is
deduced from the amplitude of S11. The resonant frequency of the empty cavity (with the stirrer but
without the perturbing object) is about 924.092MHz in measurements and 924.309 MHz in simulations.

A good agreement between simulations and measurements is obtained, so that the use of our
proposed measurement technique can be considered in a cavity of complex geometry.
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(a) (b)

Figure 14. Cavity with a mode-stirrer, (a) 3D view, (b) top view.
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Figure 15. Electric field amplitude variation for the cavity with a mode-stirrer.

5.3. Small Box with Aperture within a Parallelepipedic Cavity

This method is intended to show that the perturbation method could be used for field measurement
inside a device under test (DUT). Our measurement approach is particularly useful in this specific case,
as the small dimensions of the perturbing object permits measurements through the device apertures.

The system consists of the same parallelepipedic cavity in which a closed aluminium box of
dimensions (Lx = 310 mm, Ly = 360 mm, Lz = 560 mm) with two rectangular apertures in inserted
(Fig. 16). Both apertures are centred on the measurement line (x0 = W/2, z0 = 497.5mm), and have the
same dimensions (Ls = 100mm and Ws = 50 mm). From now on, the horizontal rectangular aperture
is called Slot1, whereas Slot2 refers to the vertical one.

The measurements are performed around 277.2MHz with a metallic sphere of radius 1 cm and a
plastic sphere covered by wet cotton of radius 1.5 cm, the sphere dimensions being here limited by the
apertures width. The measured frequency shift variations for both perturbing spheres are presented in
Fig. 17. Due to the larger dimension of the dielectric sphere, a wider frequency excursion is observed
with this sample.

The radius of the dielectric sphere is bigger than the metallic sample radius, and its diameter, of
3 cm, is close to the aperture width of 5 cm. Therefore, when the dielectric sphere is in proximity of
the first aperture Slot1, located around y = 310 mm, a coupling phenomenon appears and implies at
one sphere position a resonant frequency value which is not in concordance with the expected value
(peak in Fig. 17). As already mentioned, the perturbation theory relies on the hypothesis of a small
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Figure 17. Frequency shift variation with metallic and dielectric spheres.

field perturbation induced by the perturbing object: this hypothesis is not respected at this position.
No coupling effect is observed while passing Slot2.

In Fig. 18, measurement results obtained with both perturbing spheres are presented and compared
to the simulations results. One can notice that, except for the previously mentioned peak observed at
the aperture position, both measurement results are in agreement with simulations.

The used of an E-field probe has been proposed in similar cases [27]. However, it has to be
noticed that the E-field probe used in the following (Section 6.1) is too large (53mm diameter) to
pass through these apertures, and that the presence of the optical cable would also disturb this type
of measurement. Moreover, a coupling effect appears between the probe and the conducting surfaces
so that it is recommended to respect a minimal distance of 100 mm between the probe and conducting
planes. The coupling effect observed with the perturbation method is more localized.

6. METHOD ADAPTATION TO THE REVERBERATION CHAMBER

6.1. Determination of the Mode Electromagnetic Energy

Throughout this paper, measurements have been compared to analytical and simulation results obtained
without taking the excitation power into account. For the analytical expression, unit amplitude is
chosen for the electric field. For the computation of the cavity eigenmodes using the Finite Element
Method, a modal approach is adopted [28]. In contrary to the harmonic approach, the excitation
antenna and the generator power are not taken into account, and the eigenmodes obtained are of
unit electromagnetic energy W0; a normalization of the electric field is thus necessary while comparing
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Figure 18. Normalized amplitude of the simulated of extracted electric field.

simulation and measurement results.
However, the experimental determination of the effective field amplitude is possible. The total

power received by the antenna loaded by the cavity Prec is simply given by:

Prec =
(
1− |S11|2

)
· Pgen (22)

where S11 is the system reflection coefficient, and the generator power Pgen takes the cables losses into
account. The power that is not reflected can be radiated (and contribute to the eigenmode power and
the losses within the cavity) or dissipated by the antenna.

The eigenmode power is deduced from the total received power by subtracting the system losses
Ploss. These last ones, at the resonant frequency f0, are linked to the system quality factor Q, as [5]:

Q = 2πf0.
W0

Ploss
(23)

This quality factor takes account of losses from various origins [29]: Joule effects in cavity walls, power
absorbed in loading objects (as the device under test), leaking of the excitation antenna. For a single
mode, the quality factor is experimentally obtained using the formula:

Q =
f0

fBW
(24)

where fBW represents the mode bandwidth.
Thus the measurement of the reflection coefficient of the cavity without the perturbating object

leads to the mode electromagnetic energy and consequently to the amplitude of the electric field
variation. This allows a complete characterization of the electric field amplitude through measurements
using the proposed method.

Let us consider a thin metallic perturbating cylinder parallel to x-axis. According to Eq. (14), one
introduces the K factor defined by:

|Ex| = K

√
|Re(∆f)|

f0
(25)

where Re(A) design the real part of A, and

K =

√√√√√12W0
1− e2

e2

[
1
2e

ln
(

e + 1
1− e

)
− 1

]

4πr2hε0
(26)
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The energy W0 of the empty cavity for a given mode can also be defined as:

W0 =
PlossQ

2πf0
(27)

where Ploss, Q and f0 are respectively the loss power, quality factor and resonant frequency of the mode.
To validate this approach, measurements are performed in the empty cavity for the TE021 mode.

Two measurements techniques are employed. The first one is the presented perturbation technique
while using a metallic cylinder of radius 1.925 mm and height 11.07 cm oriented along x-axis and moved
along the line (x0 = W/2, z0 = H/2). The second measurement technique consists of using an electric
field probe PMM EP-600 for a fixed excitation frequency of 339.04MHz, and to move it along the same
line. The results obtained by both methods will be compared.

From S21 and S11 measured parameters, we deduce the quality factor Q. The electromagnetic
averaged energy in the empty cavity is related to the power loss by Eq. (27).

The power of losses is given by:
Ploss

Pin
= 1− |S12(f0)|2 − |S11(f0)|2 (28)

where Pin is the excitation power of the antenna. Both values of s-parameters are defined at the resonant
frequency of the investigated mode. Then the calculated power loss allows to find the electromagnetic
energy of the empty cavity according to Eq. (27). Finally, we find in the measurement case: Q = 732.34,
W0 = 2.57 · 10−10 J and the K factor is about 500.22V/m.

The absolute value of the measured electrical field from perturbation theory is shown in Fig. 19.
As we can see, the field measured from perturbation exhibits a good fit with the measurements from
probe, even for small field amplitudes. The advantages of the perturbation technique over the probe lie
in its smaller dimensions and the absence of wires, which permit field measurement within the DUT.

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

y-axis (mm)

E
 (

V
/m

)

 

 
Probe

Perturbation

Figure 19. Electrical field measured from the perturbation method and with the probe.

6.2. Regime of Overlapping Resonances

In this paper, the cavity studies are performed at low frequencies, where the resonances can be isolated.
At higher frequencies, the modal density increases and mode overlap occurs. In the regime of mode
overlap, it becomes difficult to resolve the resonances, whereas the presented perturbation method
requires the determination of the resonance frequencies as well as the related quality factor as mentioned
in the previous paragraph. Thus this high eigenmode density limits the application of our method in
high frequencies.

This overlap phenomenon is increased by the low quality factor of our cavity that widens the
resonances. Results could be improved by using a cavity of high quality factor and a small perturbing
sample so that the down shifted frequency remains above the frequency of the previous mode.

In [30], Kuhl et al. present an extraction of resonance positions and widths for a microwave cavity
in the strong overlapping regime. The Harmonic Inversion method, applied to the measured reflection
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coefficient, leads to the complex resonance frequencies (the imaginary part leading to the quality factor)
as well as the related reflection coefficient amplitude. In this paper, the extraction of the parameters
succeeded for an overlap of up to 12 modes. The precision required by the perturbation method in
the determination of the frequency shift could restrict this approach to a lower overlap. However, the
extracted complex resonance frequency leading to the only necessary parameters (the resonant frequency
and the quality factor) to determine the field properties using the perturbation method, the extension
of our proposed technique to the moderate overmoded cavity could be considered.

7. CONCLUSION

As the field distribution within a resonant cavity is very sensitive to the insertion of objects in
its enclosure, conventional measurement techniques employed in reverberation chambers suffer from
important measurement errors as they necessitate the presence of an antenna or a probe at the
measurement location. Therefore, we propose a measurement approach based on the perturbation
theory, to avoid the use of this antenna. This indirect approach allows the extraction of the field
properties from the variation of the resonant frequency induced by a small inserted object. As shown in
this paper, a special attention has to be paid to the choice of the inserted object, as its shape, dimensions
and material lead to the measurement of different field properties.

Preliminary simulations and measurements performed in a canonical case have been used to choose
perturbing objects appropriated to the studied resonant mode. We firstly considered several spherical
perturbing objects, two metallic and two dielectric ones of different radii. Whereas with the metallic
sphere the magnetic field can disturb the electric field extraction, the use of a dielectric object leads
with good accuracy to the spatial variation of the electric field amplitude. Moreover, the perturbing
sphere has to be small enough for a precise reconstruction of the electric field spatial variation, but the
resonant frequency variation also needs to be sufficient to be measured with a good accuracy, therefore
a compromise has to be found. Finally, the better choice would be to use a small sphere made of a high
permittivity dielectric material. Secondly, the extraction of the field amplitude of a single electric field
component has been achieved with a good accuracy while using a thin metallic cylinder as a perturbing
object.

Good concordance has also been obtained between measurement results and numerical ones, in the
more complex cases of a cavity equipped by a mode stirrer or loaded by a metallic box. Therefore,
our proposed measurement technique can be proposed as a good candidate for measurements in
reverberation chambers. However, some developments remain necessary, in particular to extend this
technique to the regime of mode overlap; a track is proposed.

Avoiding the presence of a probe within the cavity that locally disturbs the field distribution,
this technique could permit very accurate measurements. Moreover, the measurement setup presents
the advantage of being low cost, very simple to install and to use, and easily adaptable to any cavity
geometry.
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cavities studied by harmonic inversion,” Phys. Rev. Lett., Vol. 100, No. 25, 254101, Jun. 2008.


