Vol. 143
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-11-08
Dispersion and Local-Error Analysis of Compact Lfe-27 Formula for Obtaining Sixth-Order Accurate Numerical Solutions of 3D Helmholtz Equation
By
Progress In Electromagnetics Research, Vol. 143, 285-314, 2013
Abstract
We present the dispersion and local-error analysis of the twenty-seven point local field expansion (LFE-27) formula for obtaining highly accurate semi-analytical solutions of the Helmholtz equation in a 3D homogeneous medium. Compact finite-difference (FD) stencils are the cornerstones in frequency-domain FD methods. They produce block tri-diagonal matrices which require much less computing resources compared to other non-compact stencils. LFE-27 is a 3D compact FD-like stencil used in the method of connected local fields (CLF) [1]. In this paper, we show that LFE-27 possesses such good numerical quality that it is accurate to the sixth order. Our analyses are based on the relative error studies of numerical phase and group velocities. The classical second-order FD formula requires more than twenty sampling points per wavelength to achieve less than 1% relative error in both phase and group velocities, whereas LFE-27 needs only three points per wavelength to match the same performance.
Citation
Sin-Yuan Mu, and Hung-Wen Chang, "Dispersion and Local-Error Analysis of Compact Lfe-27 Formula for Obtaining Sixth-Order Accurate Numerical Solutions of 3D Helmholtz Equation," Progress In Electromagnetics Research, Vol. 143, 285-314, 2013.
doi:10.2528/PIER13090103
References

1. Chang, H.-W. and S.-Y. Mu, "Semi-analytical solutions of the 3-D Homogeneous Helmholtz equation by the method of connected local fields," Progress In Electromagnetics Research, Vol. 142, 159-188, 2013.

2. Smith, G. D., Numerical Solution of Partial Differential Equations, 2nd Ed., Oxford University Press, 1978.

3. Hall, C. A. and T. A. Porsching, "Numerical Analysis of Partial Differential Equations," Prentice-Hall, 1990.

4. Jo, C.-H., C. Shin, and J. H. Suh, "An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator," Geophysics, Vol. 61, No. 2, 529-537, 1996.
doi:10.1190/1.1443979

5. Nehrbass, J. W., J. O. Jevtic, and R. Lee, "Reducing the phase error for finite-difference methods without increasing the order," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 8, 1194-1201, 1998.
doi:10.1109/8.718575

6. Singer, I. and E. Turkel, "High-order finite difference method for the Helmholtz equation," Computer Methods in Applied Mechanics and Engineering, Vol. 163, 343-358, 1998.
doi:10.1016/S0045-7825(98)00023-1

7. Singer, I. and E. Turkel, "Sixth order accurate finite difference schemes for the Helmholtz equation," Journal of Computational Acoustics, Vol. 14, 339-351, 2006.
doi:10.1142/S0218396X06003050

8. Sutmann, G., "Compact finite difference schemes of sixth order for the Helmholtz equation," Journal of Computational and Applied Mathematics, Vol. 203, 15-31, 2007.
doi:10.1016/j.cam.2006.03.008

9. Hadley, G. R., "High-accuracy finite-difference equations for dielectric waveguide analysis I: Uniform regions and dielectric interfaces ," Journal of Lightwave Technology, Vol. 20, No. 7, 1210-1218, 2002.
doi:10.1109/JLT.2002.800361

10. Hadley, G. R., "High-accuracy finite-diffference equations for dielectric waveguide analysis II: Dielectric corners," Journal of Lightwave Technology, Vol. 20, No. 7, 1219-1231, 2002.
doi:10.1109/JLT.2002.800371

11. Chang, H.-W. and S.-Y. Mu, "Semi-analytical solutions of the 2-D Homogeneous Helmholtz equation by the method of connected local fields," Progress In Electromagnetics Research, Vol. 109, 399-424, 2010.
doi:10.2528/PIER10092807

12. Mu, S.-Y. and H.-W. Chang, "Theoretical foundation for the method of connected local fields," Progress In Electromagnetics Research, Vol. 114, 67-88, 2011.

13. Tsukerman, I. "Electromagnetic applications of a new finite-difference calculus," IEEE Transaction on Magnetics, Vol. 41, No. 7, 2206-2225, 2005.
doi:10.1109/TMAG.2005.847637

14. Fernandes, D. T. and A. F. D. Loula, "Quasi optimal finite difference method for Helmholtz problem on unstructured grids," Int. J. Numer. Meth. Engng., Vol. 82, 1244-1281, 2010.

15. Chang, H.-W. and Y.-H. Wu, "Analysis of perpendicular crossing dielectric waveguides with various typical index contrasts and intersection profiles," Progress In Electromagnetics Research, Vol. 108, 323-341, 2010.
doi:10.2528/PIER10081008

16. Engquist, B. and A. Majda, "Absorbing boundary conditions for numerical simulation of waves," Applied Mathematical Science, Vol. 74, 1765-1766, 1977.

17. Chang, H.-W., W.-C. Cheng, and S.-M. Lu, "Layer-mode transparent boundary condition for the hybrid FD-FD method," Progress In Electromagnetics Research, Vol. 94, 175-195, 2009.
doi:10.2528/PIER09061606

18. Harari, I. and E. Turkel, "Accurate finite difference methods for time-harmonic wave propagation," Journal of Computational Physics, Vol. 119, No. 2, 252-270, 1995.
doi:10.1006/jcph.1995.1134

19. Trefethen, L. N., "Group velocity in finite difference schemes," SIAM Rev., Vol. 24, No. 2, 113-136, 1982.
doi:10.1137/1024038

20. Anne, L. and Q. H. Tran, "Dispersion and cost analysis of some ¯nite di®erence schemes in one-parameter acoustic wave modeling," Computational Geosciences, Vol. 1, 1-33, 1997.
doi:10.1023/A:1011576309523

21. Peterson, A. F., S. L. Ray, and R. Mittra, Computational Method for Electromagnetics, IEEE Press, 1998.

22. Rao, K. R., J. Nehrbass, and R. Lee, "Discretization errors in finite methods: Issues and possible solutions," Comput. Methods Appl. Mech. Engrg., Vol. 169, 219-236, 1999.
doi:10.1016/S0045-7825(98)00155-8

23. Taflove, , A. and S. C. Hagness, "Computational Electrodynamics: The Finite-difference Time-domain Method," Artech House, 2005.

24. Spotz, W. F. and G. F. Carey, "A high-order compact formulation for the 3D Poisson equation," Numerical Methods for Partial Differential Equations, Vol. 12, No. 2, 235-243, 1996.
doi:10.1002/(SICI)1098-2426(199603)12:2<235::AID-NUM6>3.0.CO;2-R

25. Chang, H.-W. and S.-Y. Mu, "3-D LFE-27 formulae for the method of connected local fields," Optics & Photonics Taiwan, International Conference, Dec. 2012.

26. Ishimaru, A., Electromagnetic Propagation, Radiation and Scattering, Prentice Hall, 1991.