1. Chang, H.-W. and S.-Y. Mu, "Semi-analytical solutions of the 3-D Homogeneous Helmholtz equation by the method of connected local fields," Progress In Electromagnetics Research, Vol. 142, 159-188, 2013.
2. Smith, G. D., Numerical Solution of Partial Differential Equations, 2nd Ed., Oxford University Press, 1978.
3. Hall, C. A. and T. A. Porsching, "Numerical Analysis of Partial Differential Equations," Prentice-Hall, 1990.
4. Jo, C.-H., C. Shin, and J. H. Suh, "An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator," Geophysics, Vol. 61, No. 2, 529-537, 1996.
doi:10.1190/1.1443979
5. Nehrbass, J. W., J. O. Jevtic, and R. Lee, "Reducing the phase error for finite-difference methods without increasing the order," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 8, 1194-1201, 1998.
doi:10.1109/8.718575
6. Singer, I. and E. Turkel, "High-order finite difference method for the Helmholtz equation," Computer Methods in Applied Mechanics and Engineering, Vol. 163, 343-358, 1998.
doi:10.1016/S0045-7825(98)00023-1
7. Singer, I. and E. Turkel, "Sixth order accurate finite difference schemes for the Helmholtz equation," Journal of Computational Acoustics, Vol. 14, 339-351, 2006.
doi:10.1142/S0218396X06003050
8. Sutmann, G., "Compact finite difference schemes of sixth order for the Helmholtz equation," Journal of Computational and Applied Mathematics, Vol. 203, 15-31, 2007.
doi:10.1016/j.cam.2006.03.008
9. Hadley, G. R., "High-accuracy finite-difference equations for dielectric waveguide analysis I: Uniform regions and dielectric interfaces ," Journal of Lightwave Technology, Vol. 20, No. 7, 1210-1218, 2002.
doi:10.1109/JLT.2002.800361
10. Hadley, G. R., "High-accuracy finite-diffference equations for dielectric waveguide analysis II: Dielectric corners," Journal of Lightwave Technology, Vol. 20, No. 7, 1219-1231, 2002.
doi:10.1109/JLT.2002.800371
11. Chang, H.-W. and S.-Y. Mu, "Semi-analytical solutions of the 2-D Homogeneous Helmholtz equation by the method of connected local fields," Progress In Electromagnetics Research, Vol. 109, 399-424, 2010.
doi:10.2528/PIER10092807
12. Mu, S.-Y. and H.-W. Chang, "Theoretical foundation for the method of connected local fields," Progress In Electromagnetics Research, Vol. 114, 67-88, 2011.
13. Tsukerman, I. "Electromagnetic applications of a new finite-difference calculus," IEEE Transaction on Magnetics, Vol. 41, No. 7, 2206-2225, 2005.
doi:10.1109/TMAG.2005.847637
14. Fernandes, D. T. and A. F. D. Loula, "Quasi optimal finite difference method for Helmholtz problem on unstructured grids," Int. J. Numer. Meth. Engng., Vol. 82, 1244-1281, 2010.
15. Chang, H.-W. and Y.-H. Wu, "Analysis of perpendicular crossing dielectric waveguides with various typical index contrasts and intersection profiles," Progress In Electromagnetics Research, Vol. 108, 323-341, 2010.
doi:10.2528/PIER10081008
16. Engquist, B. and A. Majda, "Absorbing boundary conditions for numerical simulation of waves," Applied Mathematical Science, Vol. 74, 1765-1766, 1977.
17. Chang, H.-W., W.-C. Cheng, and S.-M. Lu, "Layer-mode transparent boundary condition for the hybrid FD-FD method," Progress In Electromagnetics Research, Vol. 94, 175-195, 2009.
doi:10.2528/PIER09061606
18. Harari, I. and E. Turkel, "Accurate finite difference methods for time-harmonic wave propagation," Journal of Computational Physics, Vol. 119, No. 2, 252-270, 1995.
doi:10.1006/jcph.1995.1134
19. Trefethen, L. N., "Group velocity in finite difference schemes," SIAM Rev., Vol. 24, No. 2, 113-136, 1982.
doi:10.1137/1024038
20. Anne, L. and Q. H. Tran, "Dispersion and cost analysis of some ¯nite di®erence schemes in one-parameter acoustic wave modeling," Computational Geosciences, Vol. 1, 1-33, 1997.
doi:10.1023/A:1011576309523
21. Peterson, A. F., S. L. Ray, and R. Mittra, Computational Method for Electromagnetics, IEEE Press, 1998.
22. Rao, K. R., J. Nehrbass, and R. Lee, "Discretization errors in finite methods: Issues and possible solutions," Comput. Methods Appl. Mech. Engrg., Vol. 169, 219-236, 1999.
doi:10.1016/S0045-7825(98)00155-8
23. Taflove, , A. and S. C. Hagness, "Computational Electrodynamics: The Finite-difference Time-domain Method," Artech House, 2005.
24. Spotz, W. F. and G. F. Carey, "A high-order compact formulation for the 3D Poisson equation," Numerical Methods for Partial Differential Equations, Vol. 12, No. 2, 235-243, 1996.
doi:10.1002/(SICI)1098-2426(199603)12:2<235::AID-NUM6>3.0.CO;2-R
25. Chang, H.-W. and S.-Y. Mu, "3-D LFE-27 formulae for the method of connected local fields," Optics & Photonics Taiwan, International Conference, Dec. 2012.
26. Ishimaru, A., Electromagnetic Propagation, Radiation and Scattering, Prentice Hall, 1991.