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Abstract—We present the dispersion and local-error analysis of
the twenty-seven point local field expansion (LFE-27) formula for
obtaining highly accurate semi-analytical solutions of the Helmholtz
equation in a 3D homogeneous medium. Compact finite-difference
(FD) stencils are the cornerstones in frequency-domain FD methods.
They produce block tri-diagonal matrices which require much less
computing resources compared to other non-compact stencils. LFE-
27 is a 3D compact FD-like stencil used in the method of connected
local fields (CLF) [1]. In this paper, we show that LFE-27 possesses
such good numerical quality that it is accurate to the sixth order. Our
analyses are based on the relative error studies of numerical phase and
group velocities. The classical second-order FD formula requires more
than twenty sampling points per wavelength to achieve less than 1%
relative error in both phase and group velocities whereas LFE-27 needs
only three points per wavelength to match the same performance.

1. INTRODUCTION

Numerical solutions of partial differential equations have grown parallel
to the popularization of digital computers. Solutions of Helmholtz
equation by the classical second-order accurate finite-difference (FD)
method had been investigated [2, 3]. Classical high-accuracy FD
approximations to Helmholtz equation can be realized by non-compact
stencils at the expense of increased computational costs. Having
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a compact stencil which connects a point of interest only to its
neighboring points is key to the success in the frequency-domain
FD method. Compact stencils produce block tri-diagonal matrices
which require much less computing resources compared to non-compact
stencils.

In last two decades, many high-order compact formulae for
discretizing 2-D and 3-D homogeneous Helmholtz equation have been
proposed. Based on the method of steepest descent, Jo et al. increased
the order of accuracy with a new compact 9-point FD-like formulation
for the 2D Helmholtz operator in 1996 [4]. In 1998, Nehrbass
et al. improved the classical 3D FD2-7 (second-order accurate, 7-
point) formula and derived the new numerical scheme called RD-
FD [5]. Although it remains second-order accurate, RD-FD is able
to half the dispersion error. It is identical to our LFE-FC-7 stencil
in Section 4.1 derived from using a spherical Fourier-Bessel series
(SFBS). By replacing the Laplace operator with −k2, Singer and
Turkel derived 4th-order accurate, compact 2D FD-like stencil for
the Helmholtz equation in 1998 [6]. Using similar techniques, they
published 6th-order accurate, compact 2D formula in 2006 [7]. Later
in 2007, Sutmann extended Singer and Turkel’s results and published
the 3D compact Helmholtz stencil [8]. The works of Singer-Turkel and
Sutmann are based on Taylor series expansion. Both Hadley [9, 10]
and Chang-Mu [11, 12] used Fourier-Bessel Series as the basis function
for the local field in deriving a 2D compact FD-like stencil which we
refer to as LFE2D-9. Along these lines, Tsukerman [13] proposed other
choices of basis functions for 2D Helmholtz equation including plane
waves and harmonic polynomials. He called this new class of difference
schemes FLAME (Flexible Local Approximation Methods). In 2010
Fernandes and Loula derived the sixth-order accurate scheme for 3-
D Helmoltz equation using a quasi optimal finite difference method
(QOFD) [14]. Their 3D stencil was given (see Equation (6) below)
with truncated Taylor series with numerical coefficients. Recently, we
derived and published a sixth-order accurate, 3D compact Helmholtz
stencil [1]. Like our 2D formula, it is given in closed-form expression
as weighted products of spherical Bessel functions (see Equation (10)
below).

The method of connected local fields (CLF), which we recently
proposed, is a new approach for obtaining semi-analytical solutions of
Helmholtz equation. CLF is a mixture of the integral-equation (IE)
based and PDE-based methods. In CLF, the entire solution consists
of overlapping local fields. The fundamental building block (patch) of
the 3-D CLF is a cube consisting of a central point and twenty six
points on the cube’s surface. Each local field (patch) is represented by
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a truncated SFBS satisfying Helmholtz equation. CLF connects these
patches and forms a system of linear equations just like the FD-FD
method.

Using these newly developed methods with the increased
computing power, we can systematically apply them to study various
EM wave problems even though there are still many difficult issues
to be solved. For example, applying a high-order FD-FD method
to analyze devices with high dielectric contrasts, such as SOI-based
waveguide devices [15], one needs various FD stencils on uniform
regions, regions with interfaces, regions with corners, or regions
located near computational boundaries (i.e., absorbing boundary
condition [16, 17]). The simulation error comes from the imperfections
of all the various approximations. Since most waveguide devices are
made of blocks of homogeneous materials, the propagation error in
homogenous regions must be minimized. In this paper we shall focus
on LFE-27 error analysis in free space. This includes Fourier-Bessel
Series truncation error analysis of the local field inside a given patch,
and the global dispersion characteristics of a given plane wave in the
infinite region.

It is well known that the infinite homogeneous region supports
isotropic non-dispersive plane wave solutions that satisfy Helmholtz
equation. Plane wave solutions also exist for the discretized Helmholtz
equation in infinite uniform media. While propagating numerical plane
waves like analytic solutions, do not suffer from amplitude attenuation,
they are dispersive and also anisotropic. Numerical dispersion means
that wave fields of different frequencies propagate at different velocities.
The direction of propagation with respect to the grid layout will affect
the propagation speed. The latter phenomenon is called numerical
anisotropy.

We classify numerical errors from FD-like methods into two types:
local and global errors. Global errors are errors of a numerical plane
wave propagating in infinite grids. The global error is usually referred
as numerical dispersion which has also been called spurious dispersion
by Harari and Turkel [18] because the dispersion phenomenon arises
completely from the discretization process instead of actual physical
phenomena. Numerical errors generated from all possible excitations
including inhomogeneous (evanescent) plane waves are called local
errors because their propagation is locally contained. The local error
includes deviations from the exact analytic solution in both amplitude
and phase.

Numerical dispersion analyses of compact formulae on discretiz-
ing Helmholtz equation in uniform regions can be found in refer-
ences [12, 18–23]. In particular, thorough dispersion research on classi-
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cal FD formulae for 1-D Helmholtz equation were given in Harari and
Turkel’s work in 1995 [18]. We are the first to derive the dispersion
equations of compact formulae for homogeneous 3-D Helmholtz equa-
tion. Dispersion characteristics of the classical 7/27-point, second-
order accurate formulae FD2-7, FD2-27 [24] and six-order accurate
FD6-27 formula [8] will be briefly reviewed. Our focus will be on the
in-depth investigation of the numerical phase and group velocity dis-
persion characteristics of the proposed SFBS-based formulae including
three second-order accurate LFE-FC-7, LFE-EC-13, LFE-CR-9 equa-
tions, and the main sixth-order accurate LFE-27 formula [1, 25]. Here
FC, EC and CR respectively denote face-centered, edge-centered and
corner points on the twenty-seven point CLF basic cube/patch.

2. FD-LIKE FORMULAE FOR 3-D HELMHOLTZ
EQUATION

The general form of a compact 27-point FD-like formula for 3-D ho-
mogeneous Helmholtz equation can be expressed as [1, Equation (2a)]:

W0u0=Wfuf
Σ + Weu

e
Σ + Wcu

c
Σ,

uf
Σ,u+00 + u−00 + u0+0 + u0−0 + u00+ + u00−,

ue
Σ,u++0 + u−+0 + u+−0 + u−−0 + u+0+ + u+0− + u−0+ + u−0−

+u0++ + u0−+ + u0+− + u0−−,

uc
Σ,u++++u++−+u+−++u+−−+u−+++u−+−+u−−++u−−−. (1)

The reduction of Equation (1) has taken into consideration the isotropy
of four symmetry groups, the central node u0, the six face-centered
nodes, the twelve edge-centered nodes and the eight remain nodes on
the corners. The summations of these fields on the same group are
denoted by uf

Σ, ue
Σ and uc

Σ respectively. The three subscripts for the
field uxyz specify its location relative to the central point u0. The
plus, minus or zero sign indicates a unit’s forward/backward or null
displacement (∆) along the x, y or z direction.

Generally, the FD-like coefficients are functions of the normalized
analytic wavenumber V , which is defined as the product of the analytic
free-space wavenumber k and the grid spacing ∆. Nλ is the field
sampling density, number of sampling points per wavelength, given
by:

Nλ , λ

∆
=

2π

V
, (2)

where λ = 2π/k is the free space wavelength.
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2.1. Second-order Accurate 3D FD Formulae

2.1.1. Classical 7-point Formula: FD2-7

The classical means for discretizing a partial differential equation is
to replace the partial derivative terms with a finite difference approx-
imation. With Laplace operation in 3D Helmholtz equation replaced
by the classical second-order accurate seven-point formula [2, 3], Equa-
tion (1) is discretized as:

Wf =
1

∆2
, We = 0, Wc = 0, W0 =

6
∆2

− k2. (FD2-7) (3)

The first number 2 in the above equation signifies that it is second-order
accurate and the second number 7 implies that there are a total of 7
nonzero coefficients out of the total 27 3D compact stencil coefficients.
This is further illustrated in Fig. 1. Solving problems with the classical
FD2-7 needs more than thirteen sampling grids per wavelength to
reduce the unwanted numerical dispersion (less than 1% phase velocity
error) [9].

z

  

x

y

Figure 1. Illustration of a compact 7-point stencil layout. The central
point is shown in black while all face-centered points are shown in red.

2.1.2. 27-point Formula: FD2-27

Using all 27 points, the discrete Laplace operator can be derived similar
to how the seven-point formula was derived [24] Replacing Laplace
operation in 3D Helmholtz equation by the 27-point FD approximation
we have:

Wf =
7

15∆2
, We =

1
10∆2

, Wc =
1

30∆2
,

W0 =
64

15∆2
− k2. (FD2-27)

(4)
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While FD2-27 equation is of the same order of accuracy as the FD2-7 is,
it however, possesses better anisotropy characteristics than the simple
7-point stencil. Note that by setting the spatial frequency k to zero
this very FD2-27 formula ascends to a sixth-order accurate discretized
Laplace equation [2, 248–250].

2.2. High Accuracy FD Formulae

2.2.1. Sutmann’s Sixth-order Formula: FD6-27

Using the information from Helmholtz equation itself, Singer and
Turkel succeeded in deriving the six-order accurate scheme for 2-D
Helmoltz equation [7]. Sutmann extends the work and derived the
sixth-order accurate FD-like formula for the 3-D [8] case given by:

Wf =
7

15∆2

(
1− V 2

21

)
, We =

1
10∆2

(
1 +

V 2

18

)
,

Wc =
1

30∆2
, W0 =

64
15∆2

(
1− V 2

4
− 5V 4

256
− V 6

1536

)
. (FD6-27)

(5)

It is worth noting that, for their specific applications, well-behaved
source functions were considered in both Sutmann’s and Singer-
Turkel’s works. In EM and optical applications, source terms in 2D
and 3D Helmholtz equations are usually replaced by incidental fields,
allowing us to further improve accuracy of our LFE-based compact
stencils.

2.2.2. Fernandes and Loula’s Formula: QOFD-6-27

The sixth-order accurate QOFD-6-27 (quasi optimal finite difference)
coefficients, given below, were numerically obtained by Fernandes and
Loula [14] in 2010 by minimizing a least-squares functional of the local
truncation error.

Wf =
21

32
+

433

3072
V 2+

34063889

1564213248
V 4+A1,6V

6+A1,8V
8,

We =
9

64
+

229

6144
V 2+

101041417

15642132480
V 4+A2,6V

6+A2,8V
8,

Wc =
3

64
+

29

2048
V 2+

13892369

5214044160
V 4+A3,6V

6+A3,8V
8,

W0 =−6.

(QOFD-6-27) (6)

Here A1,6, A1,8, A2,6, A2,8, A3,6, A3,8 are complex expressions made
of integer numerators and denominators. This QOFD-6-27 stencil is
remarkably accurate when compared to the Taylor series expansion of
our LFE-27 analytic formula. They both agree up to fifteen significant
digits in the first two powers of the normalized wavenumber V . They
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begin to differ after the 6th significant digit in all three Wx-coefficients
of V 4, V 6 and after the 7th significant digit in V 8.

2.3. CLF Formulae

The work on 3D CLF formulae has been detailed in our prior
accompanying paper [1] except for the study of their global plane
wave dispersion characteristics and local truncation error, which are
the main focuses of this paper. We list below the four closely related
3D CLF stencils derived from using a local SFBS.

2.3.1. Face-centered LFE Formula: LFE-FC-7

In 1998, Nehrbass et al. derived a new numerical scheme called RD-
FD [5]. Their 3D RD-FD is identical to our face-centered SFBS LFE-
FC-7 stencil which halves the dispersion error of the classical FD2-7
formula. However, RD-FD remains second-order accurate. Their 3D
RD-FD formula is given by:

Wf = 1, We = 0, Wc = 0,

W0 = 6j0 (V ) . (RD-FD or LFE-FC-7)
(7)

2.3.2. Edge-centered LFE Formula: LFE-EC-13

The edge-centered based SFBS formula is called LFE-EC-13 and is
given by [1, Equation (23a)]:

Wf =0, We =1, Wc =0, W0 =12j0

(√
2V

)
. (LFE-EC-13) (8)

z

x  

y
 

Figure 2. Illustration of a com-
pact 13-point stencil layout. The
central point is shown in black
while all edge-centered points are
shown in green.
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x

Figure 3. Illustration of a
compact 9-point stencil layout.
The blue points are all eight
corners of a cubic cell.
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The twelve edge points are shown in Fig. 2.

2.3.3. Corner-point Formula: LFE-CR-9

The LFE-CR-9 stencil containing all corner points illustrated in Fig. 3
is given by [1, Equation (29a)]:

Wf =0, We =0, Wc =1, W0 =8j0

(√
3V

)
. (LFE-CR-9) (9)

2.3.4. Complete 27-point Formula: LFE-27

The coefficients of LFE-27 are obtained from a weighted superposition
of LFE-FC-7, LFE-EC-13 and LFE-CR-9, which is derived in the
accompanying paper (Ref. [1, Equations (43a)–(43b)], illustrated in
Fig. 1). It is given below to be used in subsequent analysis.




Wf =j4
(√

2V
)

j6
(√

3V
)

+
39

16
j4

(√
3V

)
j6

(√
2V

)
,

We =2j4 (V ) j6
(√

3V
)

+
3

4
j4

(√
3V

)
j6 (V ) ,

Wc =
351

128
j4 (V ) j6

(√
2V

)
− 27

64
j4

(√
2V

)
j6 (V ) ,

W0 =6j0 (V ) ·Wf +12j0
(√

2V
)
·We+8j0

(√
3V

)
·Wc.

(LFE-27) (10)

3. DISPERSION ANALYSIS

3.1. Derivation of Numerical Dispersion Equation

To analyze the numerical dispersion characteristics of Equation (1) as
we have done in previous 2D LFE-9 stencil [12], we consider the plane
wave solution defined as:

u
(⇀
r
)

= ej
⇀
κ ·⇀r = ejκr cos γ ,




⇀
κ = κ (x̂ sin θk cosφk + ŷ sin θk sinφk + ẑ cos θk)
⇀
r = r (x̂ sin θ cosφ + ŷ sin θ sinφ + ẑ cos θ)
cos γ = sin θk sin θ cos (φ− φk) + cos θk cos θ

.
(11)

In Equation (11), we denote the numerical wavenumber by κ, instead of
k. The zenith angle and azimuthal angle of the plane wave are denoted
by θk and φk respectively. Substitute Equation (11) into Equation (1)
we have:

uf
Σ,n = 2 (cosBx + cos By + cos Bz) , (12a)

ue
Σ,n = 4 (cosBx cosBy + cos By cosBz + cos Bz cosBx) , (12b)

uc
Σ,n = 8 cos Bx cosBy cosBz. (12c)
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where
Bx =B · Sx, By = B · Sy, Bz = B · Sz,

B=κ∆, Sx =sin θk cosφk, Sy =sin θk sinφk, Sz =cos θk.
(13)

The notations Sx, Sy, and Sz in Equation (13) represent the directional
cosines of the numerical wavenumber ⇀

κ, hence:

S2
x + S2

y + S2
z = 1. (14)

“Numerical” plane wave solutions are then evaluated on the grids and
summed over three symmetry groups. The results are denoted by
uf

Σ,n, ue
Σ,n and uc

Σ,n respectively. To keep the spherical symmetry
intact, it is better to choose Sx, Sy, and Sz rather than θk and φk

because the latter are associated with the spherical coordinate system
which uses a z-axis as a referenced direction, breaking the directional
symmetry. Substituting Equations (12a)–(12c) back into Equation (1)
results in the following numerical dispersion equation for 3D discretized
Helmholtz equation using a general 27-point FD-like scheme:

W0 = Wfuf
Σ,n + Weu

e
Σ,n + Wcu

c
Σ,n (15)

The four W ’s {Wx, x = 0, f, e, c} in Equation (15) are functions of
the normalized analytic wavenumber V , whereas the three uΣ,n’s
{ux

Σ,n, x = f, e, c} are functions of B, Sx, Sy, and Sz. Hence, the
normalized numerical wavenumber B is an implicit function of V and
Sx, Sy, Sz. If the FD-like scheme is perfect, B would linearly depend
on V and would be independent of Sx, Sy, and Sz. However, except
for the 1D case, it is impossible to find a perfect scheme in either 2D
or 3D cases. Now we are ready to investigate the numerical dispersion
equation (Equation (15)) for various FD-like formulae, including the
temporal dispersion analysis and the spatial dispersion (numerical
anisotropy) analysis.

3.2. Numerical Phase Velocity and Group Velocity

To quantitatively investigate dispersion characteristics, we consider the
numerical phase velocity vph as defined below:

vph , ω

κ
=

ck ·∆
κ ·∆ ≡ V

B
· c. (16)

Here, ω represents the angular frequency and c is the speed of light in
vacuum. The numerical group velocity ⇀

vgr defined below is, in general,
anisotropic.
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⇀
v gr , ∇⇀

κ
ω,

∇⇀
κ
ω =

(
x̂

∂

∂κx
+ ŷ

∂

∂κy
+ ẑ

∂

∂κz

)
ω,

(17)

where ω is considered as an implicit function of the normalized
numerical wavenumber ~B. Since ω is linearly proportional to V which
is an implicit function of ~B, we have the following constructive equation
for computing the magnitude of the numerical group velocity:

vgr = c ·
√(

∂V

∂Bx

)2

+
(

∂V

∂By

)2

+
(

∂V

∂Bz

)2

. (18)

The relative error of vph and vgr are defined as:

εph , |vph − c|
c

, εgr , |vgr − c|
c

. (19)

3.3. Surface of Non-degenerate Directions

For the 3D dispersion study, we need to first determine the minimum
set of propagation directions in the k space (wavenumber space) which

0 3Intersection of S   with E  , E

1  
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y
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Figure 4. Drawing of plane of symmetry used in the derivation of
non-degenerate directions (in the k space). The space S0 represents
the spherical surface of the unit sphere. The colorless Ei, i = 1, 2,
3 plane restricts the domain to the first octant. The green S1 plane
and the orange S2 intersect at the blue kx = ky = kz line. E2, S1, S2

together with S0 define the set of non-degenerate directions which is
further illustrated in Fig. 5.
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Figure 5. (a) Drawing of the set of non-degenerate directions (in the
k space). (b) Intersection of the red surface in Fig. 5(a) with seven
selected directions of interest listed in Table 1. These points are three
vertices denoted by A1,2 and A3 and three midpoints M1, A2 and A3

between {Ai}. The centroid of this NDD surface is denoted by Q.

is illustrated in Fig. 4 and Fig. 5(a). Note that the labels and captions
for the kx, ky and kz axes of the k space are shorten as x, y and z
to simplify the drawings of both figures. We refer to the surface of
non-degenerate directions (NDD) as the surface of intersecting points
between the NDD and the unit sphere. To find this surface of NDD
we first apply the spatial symmetry to constrain the surface to the
first octant. Furthermore by closer examining the three uΣ,n’s in
Equations (12a)–(12c), we see that we can exchange the placement
orders of Sx, Sy, Sz without changing the equations. Hence we have
even symmetry with respect to both kx = ky and kx = kz planes. The
equations that set the NDD domain are given by:

0 ≤ Sx ≤ 1√
2
,

0 ≤ Sy ≤ 1√
3
,

1√
3
≤ Sz ≤ 1,

Sz ≥ Sx ≥ Sy.

(
Sz =

√
1− S2

x − S2
y

)
(20)

This surface of NDD is further illustrated by the red triangular-
like patch in Fig. 5(a), where we show one of the NDD elements in the
3-D free space by the unit vector

−−→
OP . It is one sixth of the surface area

of an octant and hence 1/48 of the entire unit sphere. This minimal
set is constructed to simplify the analysis — every vector within this
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domain will occur 47 more times in the unit sphere. In addition,
seven representative directions are chosen from the NDD set for our
dispersion analysis. The definitions are given in Table 1 and illustrated
in Fig. 5(b). Points A1, A2 and A3 are intersections of vectors

−→
OA1,−→

OA2 and
−→
OA3 with the NDD surface. Each is parallel to the direction

(1, 0, 0), (1, 1, 0) and (1, 1, 1) respectively. Three other directions
marked by the intersection points M1, M2 and M3 are also chosen to
be, respectively, the midpoints of arc üA1A2, üA2A3, and üA3A1. The
addition of the centroidal point Q of this NDD surface completes the
final selection.

Seven chosen propagation directions are listed in Table 1.

Table 1. Seven selected directions for subsequent analysis.

Direction θk ϕk Property
−−−→
OA1 0◦ X (0, 0, 1) direction
−−−→
OA2 45◦ 0◦ (1, 0, 1) direction
−−−→
OA3 54.74◦ 45◦ (1, 1, 1) direction
−−−→
OM1 22.5◦ 0◦ M1 is the middle point of üA1A2

−−−→
OM2 47.63◦ 24.20◦ M2 is the middle point of üA2A3

−−−→
OM3 27.37◦ 45◦ M3 is the middle point of üA3A1

−−→
OQ 31.65◦ 24.20◦ Q is the intersection point of

ýA1M2, ýA2M3, and ýA3M1

4. DISPERSION CHARACTERISTICS FOR VARIOUS
FORMULAE

4.1. Numerical Study of Relative Phase/Group Velocity
Dispersion Error

In general the B-V equation (Equation (15)) is highly nonlinear and
is often very difficult to solve from either a given B to V or from a
given V to B. In Section 4.2 we will apply the first-order analysis of
the B-V relation for the LFE-27 stencil as we did previously for the
2D LFE-9 case [12]. We can only perform this type of analysis with
highly accurate compact stencils or when B and V are both small. For
greater values of B, V and for other low-order compact stencils we use
numerical techniques, including trial and error methods, to solve the
nonlinear B-V equation, Equation (15). This will be the main focus
in this section.
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4.1.1. FD2-7 Stencil

The relative phase and group veloctiy errors as functions of the
sampling density for the classical FD2-7 stencil are plotted in the
left and right part of Fig. 6. Each subplot shows seven curves
computed numerically from the nonlinear ~B-V relations defined in
Equations (16)–(17). They appear to be linear in log-log scale which
is consistent with the V 2 convergent characteristics of the dispersion
error. The wide spread between the lines is an indication of large
numerical anisotropy of this classical formula. Note that the sampling
density required to ensure less than one percent relative error is 13 and
22 for the phase and group velocity respectively.

8 9 10 11 12 13 14

FD2-7

ph
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FD2-7
gr
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Figure 6. (a) Relative phase and (b) group velocity errors of the
classical FD2-7 stencil. Each of the seven curves is ploted as a function
of the sampling density for one of the selected directions as defined in
Table 1.

4.1.2. FD2-27 Stencil

In Fig. 7 the relative phase and group velocity errors as a function
of the sampling density for the FD2-27 stencil are ploted in the same
manner as in Fig. 6. The errors curves also appear to be linear in log-
log scale. The lack of spreading between the lines is an indication of
trivial numerical anisotropy of this FD2-27 formula. Its performance
is on par with FD2-7.
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Figure 7. (a) Relative phase and (b) group velocity errors of the
classical FD2-27 stencil. Each curve is ploted as a function of the
sampling density for a fixed direction (defined in Table 1).

4.1.3. Sutmann’s FD6-27 Stencil

The curves of relative phase and group veloctiy errors for the 6th-order
accurate Sutmann’s FD6-27 stencil are shown in Fig. 8. They also
appear to be linear in log-log scale except at a much steeper slope due
to its 6th-order accuracy. Some numerical anisotropy is observed for
this FD6-27 formula. The same one percent relative error thresholds
for the required sampling density are around 3 and 4 for the phase and
group velocity respectively.
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Sutmann’s FD6-27 stencil.
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4.1.4. LFE-FC-7 (3-D RD-FD) Stencil
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Figure 9. (a) Relative phase and (b) group velocity errors of the 3D
RD-FD (LFE-FC-7) stencil.

4.1.5. LFE-EC-13 Stencil
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4.1.6. LFE-CR-9 Stencil

The relative phase and group velocity errors for the three second-order
accurate LFE stencils are shown in Figs. 9–11. Due to the complex
nature of LFE stencil coefficients, the relative error curves appear to
be quasi-linear in log-log scale. We include them for the sake of being
thorough since with the exception of LFE-FC-7 stencil, the other edge-
centered or corner-based stencil can not be used individually as we
reported in the accompanying paper [1]. One common fact shared by
all three second-order accurate LFE stencils is that the most dispersive
directions are along one of the Cartesian axis ~x, ~y, ~z and the least
dispersive direction is along the direction that passes through the
centroid of the NDD surface.
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Figure 11. (a) Relative phase and (b) group velocity errors of the
LFE-EC-13 stencil.

4.1.7. LFE-27 Stencil

The relative phase and group velocity errors for the sixth-order
accurate LFE-27 stencil are plotted in Fig. 12. The summary plot
comparing all four 3D compact stencils is shown in Fig. 13. From these
curves we see that the 3D LFE-27 stencil possesses the best numerical
quality in reducing phase and group velocity dispersion errors. Reading
straight off the curves of Fig. 12, we see that the required sampling
density to ensure less than one percent relative phase error is Nλ ≥ 2.5
and Nλ ≥ 2.7 for the group velocity. In order to be able to graph
and compare the dispersion errors among all four stencils, we chose
the worst possible propagation direction across all formulae in Fig. 13.
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The data shows that, with some calculation, second-order accuracy
is observed for the classical FD2-7 and LFE-FC-7 stencils. We can
also numerically verify that both FD6-27 and LFE-27 are sixth-order
accurate. As for the discrepancy between the two, the most obvious
difference is that LFE-27 stencil enjoys a more-than 12 dB relative error
advantage over the FD6-27 formula from the log-log plot.

4.2. First-order Dispersion Analysis of LFE-27 Formula

Having reviewed the numerical studies of the dispersion characteristics
of various 3D compact stencils, we will now look into the analytic
characteristics of the LFE-27 formula. From numerical evidence, we
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know that the LFE-27 B-V relation is almost linear due its high-order
accuracy. We wish to obtain an analytic formula for the small difference
between the two normalized wavenumbers, i.e., we seek for the relative
difference εLFE-27 defined below:

εLFE-27 =
B − V

V
. (21)

Hence, we may write the normalized numerical wavenumber B as
V (1 + εLFE-27). Keeping only the first power of εLFE-27 we shall
refer the following analytic investigation as the first-order dispersion
analysis.

Rewriting Equation (11) in terms of directional cosines, we have:

u
(⇀
r
)

= ej
⇀
κ ·⇀r = ejκr cos γ





⇀
κ = κ (x̂ Sx + ŷ Sy + ẑ cosSz)
⇀
r = x̂ x + ŷ y + ẑ z
cos γ = 1

r (xSx + ySy + zSz)
.

(22)

Using this new notation together with the trigonometry sum and
difference identities, the three group sums resulting from a “numerical”
plane wave solution are rewritten as:

uf
Σ,n=2 [cos (BSx) + cos (BSy) + cos (BSz)] , (23a)

ue
Σ,n=2

[
cosB (Sx+Sy)+cosB (Bx −By) + cosB (By + Bz)
+ cos B (By−Bz)+cosB (Bz+Bx) + cosB (Bz−Bx)

]
, (23b)

and

uc
Σ,n = 2 cos B (Sx + Sy + Sz) + 2 cosB (Sx + Sy − Sz)

+2 cosB (Sx − Sy + Sz) + 2 cosB (−Sx + Sy + Sz) . (23c)

Without going into too much detail, in the remaining section we will
follow the logic of deriving εLFE-9, the first-order analytic dispersion
formula [12, Equation (43)] for the 2D LFE-9 stencil. To further
simplify Equations (23a)–(23c) we need to expand the cosine functions
with a cosine function as the argument. For 3D analysis we
consider the very similar expression given in Equation (56) of Stratton
1941, page 409 which can also be found in Equation (11)–(85) of
Ishimaru [26].

eiz cos γ = j0 (z) +
∞∑

n=1

in (2n + 1) jn (z) Pn (cos γ).

⇒ cos(z cos γ)=j0(z)+
∞∑

n=1

(−1)n(4n+1) j2n(z)P2n(cos γ).

(24)
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Applying Equation (A6) to Equations (23a)–(23c), the three numerical
group sums uΣ,n’s can be explicitly written as:

uf
Σ,n = 2

{
3j0 (B) +

∞∑

n=1

[
(−1)n (4n + 1) j2n (B) Γf

2n

]}
,

Γf
2n = P2n (Sx) + P2n (Sy) + P2n (Sz) ,

(25a)

ue
Σ,n = 2

{
6j0

(√
2B

)
+

∞∑

n=1

[
(−1)n (4n+1) j2n

(√
2B

)
Γe

2n

]}
,

Γe
2n , P2n

(
Se

x + Se
y

)
+ P2n

(
Se

x − Se
y

)
+ P2n

(
Se

y + Se
z

)

+ P2n

(
Se

y − Se
z

)
+ P2n (Se

x + Se
z) + P2n (Se

x − Se
z) ,

Se
i = Si

/√
2, i = x, y, z,

(25b)

and

uc
Σ,n =2

{
4j0

(√
3B

)
+

∞∑

n=1

[
(−1)n (4n + 1) j2n

(√
3B

)
Γc

2n

]}
,

Γc
2n =P2n

(
Sc

x + Sc
y + Sc

z

)
+ P2n

(
Sc

x + Sc
y − Sc

z

)

+ P2n

(
Sc

x − Sc
y + Sc

z

)
+ P2n

(−Sc
x + Sc

y + Sc
z

)
,

Sc
i = Si/

√
3, i = x, y, z.

(25c)

The significance of using Γx
2n (referred to as the “directional” function)

in above equations is that we want to separate the radial and the
directional dependence of ux

Σ,n without making it more complex. Γx
2n

is a linear combination of Legendre polynomials whose arguments
contain various linear combinations of directional cosines. The
advantage of choosing directional cosines as the independent variables
in “directional” functions is that it invokes only the regular Legendre
polynomials. Otherwise, had we chosen the zenith and azimuthal
angles of the spherical coordinate system we would have to deal with
additional associated Legendre functions. In addition, we are surprised
to find out that the three “directional” functions are almost identical
except for the proportionality constants (αx

2n, x = f, e, c) as shown
below:

Γx
2n = αx

2n · ξ2n (Sx, Sy) , x = f, e, c, n = 1, 2, . . . . (25d)

where
αf

4 = 7
4 , αe

4 = −7
8 , αc

4 = −14
9 ,

αf
6 = −3

16 , αe
6 = 39

64 , αc
6 = −4

9 ,

αf
8 = 99

64 , αe
8 = 891

512 , αc
8 = 11

18 ,

(25e)
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and
ξ2 =0,

ξ4 =5
(
S4

x + S2
xS2

y + S4
y

)− 5
(
S2

x + S2
y

)
+ 1,

ξ6 =231
(
S2

xS4
y +S4

xS2
y

)−21
(
S4

x+S4
y +12S2

xS2
y

)
+21

(
S2

x+S2
y

)−2,

ξ8 =65
(
S8

x + S8
y + 2S2

xS6
y + 2S6

xS2
y + 3S4

xS4
y

)
+ 18

(
S2

x + S2
y

)
+ 1

−13
(
10S6

x+10S6
y +16S2

xS4
y +16S4

xS2
y

)
+

(
83S4

x+83S4
y +96S2

xS2
y

)
.

(25f)

This implies that the directional dispersion behavior of the three
second-order accurate stencils LFE-FC-7, LFE-EC-13 and LFE-CR-
9 are becoming increasingly indistinguishable as Nλ →∞.

Omitting the details of complex algebraic manipulation, we show
that by the principle of first-order analysis, the relative LFE-27 B-V
error can be derived from the following intermediate form:

εLFE-27 =
Wf · uf

Σ,a + We · ue
Σ,a + Wc · uc

Σ,a −W0

−V
[
Wf · d

dV

(
uf

Σ,a

)
+We · d

dV

(
ue

Σ,a

)
+Wc · d

dV

(
uc

Σ,a

)] . (26)

Here {ux
Σ,a, x = f, e, c} stands for one of the three group sums of

analytic plane wave defined as:

uf
Σ,a=2

{
3j0 (V ) +

∞∑

n=1

[
(−1)n (4n + 1) j2n (V ) Γf

2n

]}
, (27a)

ue
Σ,a=2

{
6j0

(√
2V

)
+

∞∑

n=1

[
(−1)n (4n+1) j2n

(√
2V

)
Γe

2n

]}
, (27b)

and

uc
Σ,a =2

{
4j0

(√
3V

)
+

∞∑

n=1

[
(−1)n (4n+1) j2n

(√
3V

)
Γc

2n

]}
. (27c)

Note that the specific form of the “analytical” ux
Σ,a of Equations (27a)–

(27c) is exactly the same as the “numerical” ux
Σ,n given in Equa-

tions (25a)–(25c) except that the normalized numerical wavenumber
B in the argument of spherical Bessel functions is replaced by the
normalized wavenumber V .

Substituting Equations (27a)–(27c) and Equation (10) into
Equation (26), and after skipping half a dozen intermediate steps, the
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final first-order formula for the relative LFE-27 B-V error is given
below:

εLFE-27 ≈
[

2.54
(
1− 286

1425V 2 + 311
16150V 4

)
ξ8

1− V 2

3 + 5027
99450V 4

(
1− 221

10054ξ4

)
](

V

10

)6

. (28)

We first note that εLFE-27 is of the sixth power of V and it is
multiplied by a small 10−6 factor. For small normalized wavenumbers
the directional behavior is dictated by ξ8, the eighth-order of the
directional function given in Equation (A12). If we were to compare
the first-order analytic dispersion error formula of 3D εLFE-27 with the
2D εLFE-9 (which is given below) we see that they are both of the 6th
power in V . They have similar 8th-order directional dependence in
the numerators, i.e., cos 8θ for the 2D and ξ8 for the 3D LFE formulae.
The most significant difference is that the error for 3D is about twice
that of 2D.

εLFE-9 ≈
[

1.29
(
1− 11

100V 2 + 1
225V 4

)
cos 8θ

1− 1
4V 2 +

(
33−cos 4θ

1440

)
V 4

](
V

10

)6

. (29)

5. LOCAL FIELD TRUNCATION ERROR ANALYSIS OF
LFE-27 FORMULA

Numerical errors are classified into two types: local and global errors.
The dispersion error is considered to be the global error because
it represents the deviation of the phase of a numerical plane wave
propagating in an infinite grid space. The local error, however, includes
deviation in both amplitude and phase from the exact analytic solution.
The LFE local field error refers to the LFE-interpolation error of the
2D/3D field (sitting in the central location of a 2D/3D square/cube)
from its 8/26 enclosing points using LFE-9/LFE-27 formula. The local
truncation function TLFE-27 for LFE-27 stencil is given by:

TLFE-27
∆= u0 − uLFE-27

0 , (30)

where LFE-27 interpolated field uLFE-27
0 is given by:

uLFE-27
0 , Wfuf

Σ + Weu
e
Σ + Wc uc

Σ

W0
. (31)

The coefficients W ’s {Wx, x = f, e, c} are given in Equation (10). The
exact local field can be written in terms of an infinite series of products
of the spherical Bessel function and the spherical harmonics as shown
below:

u (r, θ, φ) = a0
0j0 (kr) +

∞∑

`=1

j` (kr)
∑̀
m=0

P m
` (cos θ) (am

` cos mφ + bm
` sin mφ). (32)
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From the orthogonal equality of the spherical harmonics function, we
may obtain the unknown coefficients with the following integrals:

a0
` = 2` + 1

4πj` (kr)

∫ 2π

0

∫ π

0

u (r, θ, φ) P 0
` (cos θ) sin θdθdφ, (33a)

am
` = 2` + 1

2πj` (kr)

(`−m)!

(` + m)!

∫ 2π

0

∫ π

0

u (r, θ, φ) P m
` (cos θ) cos mφ sin θdθdφ, (33b)

bm
` = 2` + 1

2πj` (kr)

(`−m)!

(` + m)!

∫ 2π

0

∫ π

0

u (r, θ, φ) P m
` (cos θ) sin mφ sin θdθdφ. (33c)

In Appendix A, we document the detailed derivation of TLFE-27

based on the assumption that the local field is from either a
propagating plane wave or some linear combination of propagating
plane waves. The main result is given below:

TLFE-27 =
−V 8

14257152
(
a0

8 + 1680a4
8 + 2620800a8

8

)
+ O

(
V 10

)
. (34)

We see that the leading term is proportional to 10−7 · V 8. It is
also multiplied by the weighted sum of three 8th-order spherical
harmonics coefficients {ak

8, k = 0, 4, 8}. In order to further understand
the behavior of high-order spherical harmonics coefficients, please see
Appendix B, where we dive into further detail regarding the spherical
Fourier-Bessel expansion of a plane wave. With these coefficients,
we are able to numerically evaluate the magnitudes a0

8, 1680a4
8 and

2620800a8
8 revealing that these three terms are of the order of ten for
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Figure 14. Plot of three weighted 8th-order spherical harmonics
coefficients in Equation (34).
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a propagating plane wave in an arbitrary direction (see Fig. 14 and
Equations (B4a)–(B4b)) Hence, the local truncation error of the LFE-
27 interpolated field is approximately given by:

TLFE-27 ≈ 10−6 × V 8. (35)

In the worst-case scenario, the local truncation error for LFE-27
evaluated at the lowest sampling density Nλ = 2 (corresponding to
a maximal V = π) is 10−6 × π8 ≈ 0.01. The error will, of course,
increase for local fields containing evanescent waves when the EM field
is inadequately sampled, i.e., when Nλ ¿ 2.

6. DISCUSSIONS

In our accompanying paper [1] we analytically derived the LFE-27
stencil for the 3D Helmholtz operator in a homogeneous medium.
We also computed, using LFE-27 stencil, 3-D Green’s functions for
accumulated amplitude and phase errors. In this paper, we first
numerically investigate the global dispersion behavior of an arbitrary
plane wave in the seven selected directions. We also derive, based
on first-order analysis, εLFE-27 which is an analytical expression
for obtaining the normalized numerical wavenumber B from the
normalized wavenumber V . Toward the end we derive the local
truncation error function TLFE-27 and show that LFE-27 interpolated
fields from its 26 immediate surrounding fields is accurate to the sixth
power of V .

Solving 2D Helmholtz problems with FD-FD-like methods are
practical with modern computing resources. Solving 3-D Helmholtz
problems by FD-FD methods require solving significantly larger matrix
equations. If N is the number of unknowns in one dimension, a 3D FD-
FD computation using a direct solver will respectively require storage
and computational costs proportional to N5 and N7.

There are still many CLF related issues to be solved. We have
considered the homogeneous case for both the 2D and 3D Helmholtz
equation. These formulations extend naturally to continuous,
smoothly-varying media. For modeling other general passive EM-
optical waveguides/devices, we have to consider EM wave fields in
media with discontinuous material properties. We need to develop
special 2D and 3D LFE stencils for cells near a dielectric interface.
We also have to consider a vector formulation for 3D structures with
sudden changes of dielectric indices. The method of connected local
fields is still in an early stage of development, and requires further
research before it becomes a viable tool for modeling 2D and 3D
complex dielectric devices.
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7. CONCLUSIONS

In this paper, we investigate the dispersion characteristics and conduct
local-error analysis of 3-D compact SFBS-based formulae of LFE-FC-7,
LFE-EC-13, LFE-CR-9 and LFE-27. Comparing LFE-FC-7 with the
classical FD2-7 equation, we found that the former produces about half
the errors of the latter stencil. Although both are sixth-order accurate
in V , when comparing LFE-27 with Sutmann’s FD6-27 equation, we
found that the LFE-27 stencil has a 12 dB advantage over FD6-27
in both relative phase and group velocity errors. Furthermore, the
classical second-order FD formula requires more than twenty sampling
points per wavelength to achieve less than 1% relative error in both
phase and group velocities, whereas LFE-27 needs only three points
per wavelength to match the same performance. A mere factor-of-
seven reduction in the EM field sampling density leads to a whopping
reduction by a factor of 800,000 in CPU computation times when
running a 3D FD-FD computation with a direct linear equation solver.

ACKNOWLEDGMENT

We are grateful for the support of the National Science Council of the
Republic of China under the contracts 101-2221-E-110-073.

APPENDIX A. DERIVATION OF THE LOCAL
TRUNCATION FUNCTION OF THE LFE-27 STENCIL

The truncation functions for the three second-order accurate LFE
stencils are given below in this appendix. The three O functions,
{Ox(V 8), x = f, e, c}, were given in Equations (33a)–(33c) of Ref. [1].
They contained only terms up to V 6 because the eighth-power terms
were not needed to derive the 3D LFE-27 stencil. They are all given
below with the V 8 terms in order to obtain the analytic local truncation
function TLFE-27 for the LFE-27 stencil.

A.1. LFE-FC-7 Truncation Function

uf
Σ − [6j0 (V )]u0=OLFE-FC-7 ⇔ u0 =

uf
Σ −OLFE-FC-7

6j0 (V )
(A1)

OLFE-FC-7=4
∞∑

l=2

j2l (V )





a0
2l

2
+

l
2∑

m=0

[
P 4m

2l (0) a4m
2l

]



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= 4j4 (V )
[
a0

4

2
+ P 0

4 (0) a0
4 + P 4

4 (0) a4
4

]

+4j6 (V )
[
a0

6

2
+P 0

6 (0) a0
6+P 4

6 (0) a4
6

]
+Of

(
V 8

)
(A2)

Of

(
V 8

) ≈ 4j8 (V )

[
a0

8

2
+

2∑

m=0

a4m
8 P 4m

8 (0)

]
,

= 4j8 (V )
{

a0
8

[
1
2
+P 0

8 (0)
]
+a4

8P
4
8 (0)+a8

8P
8
8 (0)

}
,

= 4j8 (V )
(

99
128

a0
8 +

10395
8

a4
8 + 2027025a8

8

)
,

≈ 4V 8

34459425

(
99
128

a0
8 +

10395
8

a4
8 + 2027025a8

8

)

≈ V 8

11138400
(
a0

8 + 1680a4
8 + 2620800a8

8

)
. (A3)

A.2. LFE-EC-13 Truncation Function

ue
Σ−

[
12j0

(√
2V

)]
u0 = OLFE-EC-13 ⇔ u0 =

ue
Σ −OLFE-EC-13

12j0

(√
2V

) (A4)

OLFE3D-13 = 4

∞∑

`=2

j2`

(√
2V

) `
2∑

m=0

[
2P 4m

2`

(
1√
2

)
+(−1)m P 4m

2` (0)

]
a4m
2` ,

= 4j4
(√

2V
) {[

2P 0
4

(
1√
2

)
+ P 0

4 (0)

]
a0
4

+

[
2P 4

4

(
1√
2

)
− P 4

4 (0)

]
a4
4

}
,

+4j6
(√

2V
) {[

2P 0
6

(
1√
2

)
+ P 0

6 (0)

]
a0
6

+

[
2P 4

6

(
1√
2

)
− P 4

6 (0)

]
a4
6

}
+ Oe

(
V 8) . (A5)

Oe

(
V 8

) ≈ 4j8
(√

2V
) 2∑

m=0

[
2P 4m

8

(
1√
2

)
+ (−1)m P 4m

8 (0)

]
a4m
8 ,

= 4j8
(√

2V
) (

891

1024
a0
8 +

93555

64
a4
8 +

9× 2027025

8
a8
8

)
,

≈ 64V 8

34459425

(
891

1024
a0
8 +

93555

64
a4
8 +

9× 2027025

8
a8
8

)
,
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≈ V 8

618800

(
a0
8 + 1680a4

8 + 2620800a8
8

)
. (A6)

A.3. LFE-CR-9 Truncation Function

uc
Σ−

[
8j0

(√
3V

)]
u0 = OLFE-CR-9-3D ⇔ u0 =

uc
Σ −OLFE-CR-9

8j0

(√
3V

) (A7)

OLFR-CR-9 = 8
∞∑

`=2

j2`(
√

3V )

`
2∑

m=0

[
(−1)m P 4m

2`

(
1√
3

)
a4m

2`

]

= 8j4(
√

3V )
[
P 0

4

(
1√
3

)
a0

4 − P 4
4

(
1√
3

)
a4

4

]

=+8j6

(√
3V

)[
P 0

6

(
1√
3

)
a0

6−P 4
6

(
1√
3

)
a4

6

]
+Oc

(
V 8

)
(A8)

Oc

(
V 8

) ≈ 8j8

(√
3V

) 2∑

m=0

[
(−1)m P 4m

8

(
1√
3

)
a4m

8

]
,

= 8j8

(√
3V

)(
1584
10368

a0
8+

770
3

a4
8+400400a8

8

)
,

≈ 8V 8

425425

(
1584
10368

a0
8 +

770
3

a4
8 + 400400a8

8

)
,

≈ V 8

348075
(
a0

8 + 1680a4
8 + 2620800a8

8

)
. (A9)

A.4. LFE-27 Truncation Function

Equations (A3), (A6) and (A9) all contain V 8 terms for the three LFE
truncation functions. Given these we are able to determine OLFE-27,
the LFE truncation function as defined below:

Wfuf
Σ + Weu

e
Σ + Wcu

c
Σ −W0u

LFE-27
0 = OLFE-27. (A10)

The local truncation function TLFE-27 for the LFE-27 stencil is
given in Equation (30) and the numerical value uLFE-27

0 calculated by
LFE-27 is given in Equation (31). The sixth-order accurate LFE-27
stencil was derived using four “special” weighting factors Wx so that
the LFE-27 truncation error function would not contain any V 4, V 6

terms. Hence, the leading term in OLFE-27 will be proportional to V 8.
The exact equation for OLFE-27 is given below:

OLFE-27 = Wf ·Of

(
V 8

)
+ We ·Oe

(
V 8

)
+ Wc ·Oc

(
V 8

)
, (A11)
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where the W coefficients for the OLFE-27 function are the same as the
W coefficients for the LFE-27 formulae given by Equation (10). The W
coefficients can be normalized by setting the coefficient of the central
field u0 to 1. The normalized W coefficients are given by:

Wn
f , Wf

W0
≈ 7

64
+ O

(
V 2

)

Wn
e , We

W0
≈ 3

128
+ O

(
V 2

)

Wn
c , Wc

W0
≈ 1

128
+ O

(
V 2

)
(A12)

The local truncation error function of the LFE-27 formula can be ob-
tained by applying the three Ox functions (given Equations (A3), (A6)
and (A9)) to Equation (A11). The final result is given below:

TLFE-27 =− [
Wn

f ·Of

(
V 8

)
+ Wn

e ·Oe

(
V 8

)
+ Wn

c ·Oc

(
V 8

)]
,

=
−7
64

[
V 8

11138400
(
a0

8 + 1680a4
8 + 2620800a8

8

)]

− 3
128

[
V 8

618800
(
a0

8 + 1680a4
8 + 2620800a8

8

)]

− 1
128

[
V 8

348075
(
a0

8+1680a4
8+2620800a8

8

)]
+O

(
V 10

)
,

=
−V 8

14257152
(
a0

8 + 1680a4
8 + 2620800a8

8

)
+ O

(
V 10

)
. (A13)

APPENDIX B. SPHERICAL FOURIER-BESSEL
EXPANSION OF A PLANE WAVE

We begin with Equation (24) where a propagating plane wave along the
z-axis is expanded in infinite SFBS of (Equation (32)). The extension
to a plane wave in an arbitrary direction {θk, φk} can be obtained by
noting that (See Ref. [26, page 146, Equation (5)–(130)]):
Pn (cos γ) =P 0

n (cos θk) P 0
n (cos θ)

+ 2
n∑

m=1

(n−m)!
(n+m)!

Pm
n (cos θk) Pm

n (cos θ) cosm(φ−φk),

cos γ =cos θ cos θk + sin θ sin θk cos (φ− φk) .

(B1)

Hence, we have:

cos(kr cosγ)=j0 (kr) +
∞∑

n=1

(−1)n (4n + 1) j2n (kr)
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

P 0

2n (cos θk) P 0
2n (cos θ)

+2
2n∑

m=1

(2n−m)!
(2n+m)!P

m
2n(cosθk)Pm

2n(cos θ)cosm(φ−φk)


, (B2a)

and

sin(kr cos γ) =

∞∑
n=0

(−1)n+1 (4n + 3) j2n+1 (kr)



P 0

2n+1 (cos θk) P 0
2n+1 (cos θ)

+2

2n+1∑
m=1

(2n + 1−m)!

(2n + 1 + m)!
P m

2n+1(cos θk)P
m
2n+1(cos θ) cosm(φ−φk)


. (B2b)

From the two above equations, we can determine the explicit form of
SFBS coefficients corresponding to a plane wave. Namely,

a0
0 =1,

a0
` =

{
(−1)n (4n+1) P 0

2n (cos θk) , `=2n, n=1, 2, 3, . . .

i
[
(−1)n+1 (4n+3) P 0

2n+1 (cos θk)
]
, `=2n+1, n=0, 1, 2, . . .

,
(B3a)

am
` =





2 (−1)n (4n + 1) (2n−m)!
(2n+m)!P

m
2n (cos θk) cosmφk,

` = 2n, n = 1, 2, 3, . . .

i
[
2 (−1)n+1 (4n+3) (2n+1−m)!

(2n+1+m)!P
m
2n+1 (cos θk) cosmφk

]
,

` = 2n + 1, n = 0, 1, 2, . . .

, (B3b)

bm
` =





2 (−1)n (4n + 1) (2n−m)!
(2n+m)!P

m
2n (cos θk) sinmφk,

` = 2n, n = 0, 1, 2, . . .

i
[
2 (−1)n+1 (4n+3) (2n+1−m)!

(2n+1+m)!P
m
2n+1(cos θk) sin mφk

]
,

` = 2n + 1, n = 0, 1, 2, . . .

. (B3c)

In Equations (B3b)–(B3c), the index m of the associated Legendre
polynomial runs from 1 to `. Now we are ready to examine the
magnitude of coefficients a0

8, a4
8 and a8

8 in the local truncation function
of Equation (34).

a0
8 = 17P 0

8 (cos θk) ,

a4
8 =

34× 4!
12!

P 4
8 (cos θk) cos 4φk,

a8
8 =

34
16!

P 8
8 (cos θk) cos 8φk,

(B4a)

P 0
8 =

1
128

(
6435µ8 − 12012µ6 + 6930µ4 − 1260µ2 + 35

)
,

P 4
8 =

10395
8

ν4
(
65µ4 − 26µ2 + 1

)
,

P 8
8 = 2027025ν8,

µ = cos θk, ν = sin θk.

(B4b)
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