Vol. 51
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-04-17
Novel Nolen Matrix Based Beamforming Networks for Series-Fed Low SLL Multibeam Antennas
By
Progress In Electromagnetics Research B, Vol. 51, 33-64, 2013
Abstract
A new type of cascaded series feed beamforming networks (BFNs) is introduced. The network architecture is based on a dual-series Nolen matrix topology. It is able to produce tapered output amplitude distributions from NxN configurations. The general concept, analysis and systematic design of the BFNs are given. The networks are designed and intended to be used mainly for low Sidelobe Level (SLL) linear Multibeam Antennas (MBAs). Several design examples are presented, along with fabrication and measurements of an S-band prototype.
Citation
Fanourios Fakoukakis, and George Kyriacou, "Novel Nolen Matrix Based Beamforming Networks for Series-Fed Low SLL Multibeam Antennas," Progress In Electromagnetics Research B, Vol. 51, 33-64, 2013.
doi:10.2528/PIERB13011605
References

1. Hansen, R. C., Phased Array Antennas, 2nd Ed., John Wiley & Sons, Hoboken, New Jersey, 2009.

2. Mailloux, R. J., Phased Array Antenna Handbook, 2nd Ed., Artech House, Norwood, MA, 2005.

3. Ajioka, J. S. and J. L. McFarland, Beam-forming feeds, Antenna Handbook; Theory, Applications and Design, Chapter 19, Y. T. Lo and S. W. Lee, Eds., Van Nostrand Reinhold, New York, 1988.

4. Butler, J. L. and R. Lowe, "Beam forming matrix simplifies design of electronically scanned antennas," Electronic Design, Vol. 9, 170-173, Apr. 1961.

5. Shelton, J. P. and K. S. Kelleher, "Multiple beams from linear arrays," IRE Trans. Antennas Propagat., Vol. 9, No. 2, 154-161, Mar. 1961.
doi:10.1109/TAP.1961.1144964

6. Moody, H. J., "The systematic design of the Butler matrix," IEEE Trans. Antennas Propagat., Vol. 12, No. 6, 786-788, Nov. 1964.
doi:10.1109/TAP.1964.1138319

7. Blass, J., "Multidirectional antenna --- A new approach to stacked beams," IRE Int. Conf. Record, Vol. 8, 48-50, 1960.

8. Nolen, J., Synthesis of multiple beam networks for arbitrary illuminations, Ph.D. Dissertation, Radio Division, Bendix Corp., Baltimore, MD, Apr. 1965.

9. Shelton, J. P., "Reduced sidelobes for Butler-matrix-fed linear arrays," IEEE Trans. Antennas Propagat., Vol. 17, No. 5, 645-647, Sep. 1969.
doi:10.1109/TAP.1969.1139525

10. Li, W.-R., C.-Y. Chu, K.-H. Lin, and S.-F. Chang, "Switched-beam antenna based on modified Butler matrix with low sidelobe level," Electronics Letters, Vol. 40, No. 5, 290-292, Mar. 2004.
doi:10.1049/el:20040198

11. Gruszczynski, S., K. Wincza, and K. Sachse, "Reduced sidelobe four-beam N-element antenna arrays fed by 4 × N Butler matrices," IEEE Ant. Propag. Letters, Vol. 5, 430-434, Dec. 2006.
doi:10.1109/LAWP.2006.885015

12. Mosca, S., F. Bilotti, A. Toscano, and L. Vegni, "A novel design method for Blass matrix beam-forming networks," IEEE Trans. Antennas Propagat., Vol. 50, No. 2, 225-232, Feb. 2002.
doi:10.1109/8.997999

13. Casini, F., R. V. Gatti, L. Marcaccioli, and R. Sorrentino, "A novel design method for Blass matrix beam-forming networks," Proc. 37th Europ. Microw. Conf., 1511-1514, Munich, Germany, Oct. 2007.

14. Fonseca, N. J. G., "Printed S-band 4×4 Nolen matrix for multiple beam antenna applications," IEEE Trans. Antennas Propagat., Vol. 57, No. 6, 1673-1678, Jun. 2009.
doi:10.1109/TAP.2009.2019919

15. Fonseca, N. J. G. and N. Ferrando, "Nolen matrix with tapered amplitude law for linear arrays with reduced sidelobe level," Proc. 4th Europ. Conf. Antennas Propagat., 1-5, Barcelona, Spain, Apr. 2010.

16. Fakoukakis, F. E., S. G. Diamantis, A. P. Orfanides, and G. A. Kyriacou, "Development of an adaptive and a switched beam smart antenna system for wireless communications," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 3, 399-408, 2006.
doi:10.1163/156939306775701722

17. Fakoukakis, F. E. and G. A. Kyriacou, "On the design of a Butler matrix-based beamformer introducing low sidelobe level and enhanced beam-pointing accuracy," Proc. IEEE-APS Top. Conf. Antennas Propagat. Wirel. Comm., 1265-1268, Torino, Italy, Sep. 2011.

18. Fakoukakis, F. E., G. A. Kyriacou, and J. N. Sahalos, "On the design of Butler-like type matrices for low SLL multibeam antennas," Proc. 6th Europ. Conf. Antennas Propagat., 2604-2608, Prague, Czech Republic, Mar. 2012.

19. Jones, W. R. and E. C. Dufort, "On the design of optimum dual-series feed networks," IEEE Trans. Microw. Theory & Techn., Vol. 19, No. 5, 451-458, May 1971.
doi:10.1109/TMTT.1971.1127546

20. Allen, J. L., "A theoretical limitation on the formation of lossless multiple beams in linear arrays," IRE Trans. Antennas Propagat., Vol. 9, No. 4, 350-352, Jul. 1961.

21. White, W. D., "Pattern limitations in multiple-beam antennas," IRE Trans. Antennas Propagat., Vol. 10, No. 4, 430-436, Jul. 1962.

22. DuFort, E. C., "Optimum low sidelobe high crossover multiple beam antennas," IEEE Trans. Antennas Propagat., Vol. 33, No. 9, 946-354, Sep. 1985.
doi:10.1109/TAP.1985.1143705

23. Stein, S., "On cross-coupling in multiple beam antennas," IEEE Trans. Antennas Propagat., Vol. 10, No. 5, 548-557, Sep. 1962.
doi:10.1109/TAP.1962.1137917

24. Gotsis, K. A., G. A. Kyriacou, and J. N. Sahalos, "Improved Butler matrix configuration for smart beamforming operations," Proc. 4th Europ. Conf. Antennas Propagat., 1-4, Barcelona, Spain, Apr. 2010.