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Abstract—A new type of cascaded series feed beamforming networks
(BFNs) is introduced. The network architecture is based on a dual-
series Nolen matrix topology. It is able to produce tapered output
amplitude distributions from N × N configurations. The general
concept, analysis and systematic design of the BFNs are given. The
networks are designed and intended to be used mainly for low Sidelobe
Level (SLL) linear Multibeam Antennas (MBAs). Several design
examples are presented, along with fabrication and measurements of
an S-band prototype.

1. INTRODUCTION

Multibeam antennas have been in the forefront for several decades.
Their development mainly arose through the research in beamforming
matrices. Mainly, an MBA is composed of a linear antenna array
fed by a multiple input-multiple output beamforming network (matrix
or lens). BFN provides an array with appropriate amplitude and
phase excitations, whereas each BFN input port corresponds to a
discrete radiated beam in space. Thus, on transmit mode, multiple
independent beams can be created from a single aperture through
the sequential excitation of BFN input ports. On the other hand,
all beams are simultaneously available on receive mode. Multibeam
antennas are extensively used in satellite communications, but also in
radar and electronic warfare systems and point-to-multipoint ground
communications [1–3].

In general, multiple beam feeds are divided into two main
categories, according to the feeding method; that is, parallel
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(corporate) and series feeds [1–3]. The most widely known
beamforming matrices are the Butler [1–6], Blass [7] and Nolen [8]
matrices. The Butler matrix is a corporate multiple beam feed,
whereas Blass and Nolen matrices exploit the series feed method.
While Butler matrix is usually designed with an equal number of input
(beam) and output (antenna) ports (N×N), Blass and Nolen matrices
can be readily designed with an unequal number of inputs and outputs
(M ×N). However, some early and recent works have reported Butler
matrices with unequal numbers of inputs and outputs, implementing
low SLL distributions [4, 9–11].

Whereas the Butler matrix has received a great interest, having
been under a vast amount of research efforts and been used in a variety
of applications, Blass and Nolen matrices have not received much
attention. That is mainly due to the comparative advantages Butler
matrix appears with respect to the other two counterparts. However,
some research efforts on Blass and Nolen matrices have been published
recently [12–15], which make use of a computer coded algorithm for
the design of the networks. This algorithm is initially introduced
in [12] and aims mainly at the determination of the optimum network
device values in order to minimize power dissipation and maximize
efficiency in Blass matrix networks, which suffer from power losses on
the terminated loads. Especially in [13], an improved algorithm is used,
compared to [12], which allows for the creation of beams pointing in
arbitrary positions and can be also implemented for non-orthogonal
output amplitude and phase excitations. Lastly, in [14, 15] a singular
case of the algorithm is used since no terminated loads are needed in
Nolen matrix networks. The approach followed in this work was found
to be more convenient but mostly, more extendable to Nolen matrices
(and Nolen matrix based networks) of arbitrary number of antennas
(output ports) and radiated beams (input ports).

We have also published some work on Butler matrix and Butler
matrix-based BFNs [16–18]. However, in this work, the research effort
is focused on a novel type of series feed N × N BFN based on a
dual-series Nolen matrix architecture. The design of optimally efficient
dual-series networks was presented in [19], however the procedure used
therein cannot be extended to higher numbers of input ports.

In general, although series feed BFNs present some disadvantages
over the corporate networks, such as the larger number of elements
used (couplers, phase shifters), they also own critical assets, such
as the avoidance of transmission line crossings. Moreover, not any
arbitrary tapered output amplitude distribution can be implemented
with Butler-like corporate BFNs, due to constraints imposed by the
conservation of energy principle, the limitations on the coupling
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ratio of the asymmetric couplers and the restrictions in the parallel
circuit connections of the network configuration. On the other hand,
series networks are theoretically able to form any arbitrary amplitude
distribution. Lastly, while corporate networks are mainly used in
phased arrays systems, series networks can also be distinctively used
in frequency scanning arrays. Among the Blass and Nolen matrix, the
latter seems more attractive, offering higher circuit efficiency and less
amount of complexity, while using fewer elements. In fact, the Nolen
matrix architecture emerges from a simplification of the Blass matrix.

To the authors’ knowledge, a Nolen matrix with low SLL
distribution and equal number of inputs and outputs has not been
reported. Only a 4 × 8 low SLL Nolen matrix has been published
recently [15]. In fact, it is impossible to design an N × N Nolen
matrix with a tapered amplitude distribution, due to contradictions
in the energy conservation principle. That is, as it is proven
and referred in [20–22], low SLL radiation patterns (as a result of
tapered amplitude distributions) can only be achieved by lossy N ×N
networks. Thus, lossy N × N networks can produce low SLL MBAs,
where beam orthogonality is cancelled due to an increase in Half-
Power Beam-Width (HPBW), which also leads to an increase in
beam Crossover Level (CL). Moreover, the losses can be minimized
according to Stein’s limit [23]. The Nolen matrix, as a theoretically
lossless network, can only produce uniform amplitude distributions,
creating orthogonal beams with a SLL of about −13.2 dB. Making
the number of outputs (N) larger than the number of inputs (M)
enables for the creation of tapered amplitude distributions and also
offers a reduction in HPBW of the radiation pattern beams, leading
to more accurate beam-pointing, [9–11, 15]. Therefore, increasing
the number of antenna elements, and thus the electrical size of the
array, leads to an opposing reduction in HPBW that could restore
orthogonality (although CL is correspondingly decreased). However,
scanning efficiency is deteriorated due to the large angular distance of
beam maxima, which can be far greater than a beamwidth.

Taking all the above into account, a novel Nolen matrix based
modified topology was utilized in order to design the architecture of the
BFNs presented herein. Apart from the use of a dual-series subnetwork
as the basic building block, the design idea is based on the insertion of
losses in the network. Thus, according to the above, the lossy network
can now be designed to produce low SLL non-orthogonal beams. The
case of unequal numbers of inputs and outputs is also described. The
emphasis is again given on the design of networks offering low SLL
characteristics to the matrix fed multibeam antenna.
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2. NETWORK SYNTHESIS RATIONALE

2.1. Nolen Matrix Review

The schematic diagram of an N × N Nolen matrix is presented in
Figure 1(a). It is consisted of four-port directional couplers (θ-devices)
and phase shifters (Φ-devices). The value of θ determines the coupler’s
amplitude coupling coefficient, as shown in Figure 1(b). The Nolen
matrix is a generalization of the Butler matrix [1, 8], in which it can be
reduced. Basically, the Nolen matrix topology is the analog circuit
implementation of the general Discrete Fourier Transform (DFT)
algorithm, which can be applied to any number of elements, even
prime numbers. Therefore, it can be reduced to simpler forms, as the
Fast Fourier Transform analog equivalent Butler matrix, which can be
applied only to arrays with element number N = 2n [1]. In Figure 1(a),
the number of input ports is equal to the number of output ports;
however, it can be also designed having the number of inputs unequal
to the number of outputs.

(a) (b)

Figure 1. (a) Nolen matrix schematic diagram. (b) Directional
coupler (θ-device) basic function.

The voltage transfer function characteristics (S-parameters) of the
directional couplers are schematically presented in Figure 2.

In order for the network to be able to produce a certain
predetermined radiation pattern, the array excitation coefficients must
be calculated. Thus, aiming at a specific radiation pattern, classic
array synthesis techniques can be utilized to evaluate the necessary
amplitude and phase of the excitation coefficients at the antenna
element inputs (an,i, n = matrix input port, i = antenna port), e.g., [2].
In turn, for a steerable phased array the excitation phase sequences can
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be obtained. Then, once the array distribution is specified, the values
of θ and Φ for the whole Nolen matrix can be finally determined,
following a cascaded series microwave network design approach.

Explicitly, starting from Figure 3 an iterative procedure is followed
based on a recursive set of equations describing the behavior of a
small part of the network. Taking into account the transfer function
characteristics of the directional couplers (Figure 2), the excitation
coefficients (αn,1, αn,2) of antenna elements A1 and A2 when input
port n is excited at the first step of the iterative procedure are given
by the derived equations for the leftmost subnetwork of Figure 3, which
read:

an,1 = a′n,1 cos θej(φ−π) + a′′n,2 sin θejφ (1a)

an,2 = a′n,1 sin θej0 + a′′n,2 cos θej0 (1b)

While the power conservation principle requires that:
(
a′n,1

)2 +
(
a′′n,2

)2 = (an,1)
2 + (an,2)

2 (1c)

Thus, in order to determine the values of the first θ and Φ device
shown in Figure 3 (denoted as θ1,1 and Φ1,1 in Figure 1(a)), (1) is solved
for n = 1, implying port n = 1 excitation. The values of the rest of the
θ and Φ devices in the first row are subsequently calculated by applying
consecutive further circuit reductions and recursively applying (1).

Figure 2. Voltage transfer function characteristics of the directional
couplers.

Figure 3. Reduced schematic diagram of the Nolen matrix at the first
step of the iterative procedure.
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2.2. General Network Synthesis for Arbitrary Amplitude
Distributions

The synthesis of the networks is based on the use of a dual-series
Nolen matrix type architecture. The schematic diagram of the basic
dual-series network is presented in Figure 4, where it is shown that the
isolated unused ports of the second row couplers are terminated.

Figure 4. Schematic diagram of the basic dual-series (2×N) network.

As mentioned above, the design of an N ×N Nolen matrix with
a tapered output amplitude distribution (aiming at SLL reduction)
presents critical difficulties, since the network is theoretically lossless.
A tapered amplitude distribution can be achieved only when the
number of output (antenna) ports is larger than the number of input
(beam) ports (N > M) [15]. However, when the number of inputs is
equal to the number of outputs, the design is valid only for a dual-series
network. Therefore, the original N × N Nolen matrix architecture is
reduced to a 2×N network, which can be designed for any arbitrary
output amplitude and phase distribution for both port 1 and port 2
excitation cases.

The synthesis of networks comprising larger input port numbers
(M = 2k) is utilized by gradually combining smaller scale M × N
networks, where Mk+1 = 2Mk. The two subnetwork antenna ports
(A1-AN ) are connected in pairs through 3 dB power combiners, as
shown in Figure 5(a), where an example of a 4×N network is presented,
designed by combining two separate 2 × N subnetworks. The power
combiner is used in order to feed the antenna elements with signals
coming from the two separate 2×N subnetworks. The feeding signals
are coming from one 2 × N subnetwork at a time, regarding the
input (beam) port that is activated. These subnetworks are in turn
combined, as shown in Figure 5(a), to implement a 4×N network or
higher order networks. A distinctive point in this procedure is the fact
that, since all the 2×N subnetworks are designed to create the same
output amplitude distribution, the corresponding θ-values of all the
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(a)

(b)

Figure 5. (a) Schematic diagram of a planar 4×N network composed
of two separate 2 × N subnetworks. (b) Schematic diagram of an
8×N brick-type configuration network using two separate planar 4×N
subnetworks.

subnetworks comprising a higher order network are the same. Thus,
once the θ-values of one of the 2 × N subnetworks are determined,
no further calculations are needed for the rest subnetworks. On the
other hand, since each input (beam) port excitation must create a
different output phase distribution (phase progression between antenna
elements), creating a different radiated beam in space, once the Φ-
values of one of the 2 × N subnetworks are calculated, the values of
the rest of the subnetworks can be determined either by just inverting
the corresponding values or by simple extrapolation. If still that is not
feasible, the procedure is repeatedly applied using recursive equations
such as (1), keeping in mind that the θ-values are now already known.
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For a further increase in the number of input ports (and radiated
beams), two separate 4×N subnetworks can be combined once again
at the antenna terminals through 3 dB power combiners, creating an
8×N network in a brick-type configuration, as shown in Figure 5(b).
The procedure can be applied successively in the same manner for
even larger numbers of input ports (16 × N , 32 × N , etc.). However,
the planar single layer form of the circuit can be retained only up
to 4 × N networks. For larger numbers of input ports, multilayer or
brick-type topologies have to be realized, in order to avoid the presence
of large numbers of transmission line crossings. It is expected that
the well established by now, multilayer LTCC (Low Temperature Co-
fired Ceramic) technology is best suited for this brick-type circuits.
Moreover, the synthesis of higher order networks demands for more
rows of cascaded power combiners at the antenna port level. For
example, in the 8×N network, each 4×N subnetwork uses a row of 3 dB
power combiners (Figure 5(a)), each one of them being connected to a
corresponding 3 dB power combiner on the central panel (Figure 5(b)).
Thus, each antenna port is connected to the network through a 4 input-
1 output power combiner. The basic drawback of this configuration
is that the losses are increased by a 3 dB amount (assuming that
Wilkinson power combiners are adopted) with each added row of
combiners (total of 6 dB for the 8×N network case).

In order to achieve higher network efficiency, increased beam-
pointing accuracy and fully exploit angular sector coverage, the final
number of input ports (M) should be equal to the number of output
ports (antenna elements, N). In that way, the capabilities of the
network are fully exploited.

It must be noted that the networks are unavoidably made lossy
through the use of the power combiners connected at the output-
antenna ports. Wilkinson combiners or 3 dB hybrid couplers can be
used. In the case of the Wilkinson combiners, the losses arise from the
asymmetry due to the activation of one input port at a time, resulting
to a voltage difference between the two input ports. This voltage
difference creates a leakage current on the resistor branch between the
two ports, which is dissipated on the ohmic resistor connected between
them. This dissipative loss accounts for the half of the input power
(−3 dB). On the other hand, when 4-port 3 dB hybrid couplers are
used, one of the two output ports must be terminated, while the other
is connected to the antenna. As a result, one half of the input power
is again lost on the terminated load. Thus, the 3 dB losses expected
constitute the optimum (minimum) theoretical value. Furthermore, as
mentioned above, these losses are increased by a 3 dB amount each time
the number of input (beam) ports is increased (doubled, Mk+1 = 2Mk),
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since another row of 3 dB combiners is added on each step of the
procedure.

At this point it must be emphasized that the design procedure
adopted herein follows a simpler and more convenient approach
compared to the previous efforts ([12–15]), which make use of a
specialized algorithm in order to calculate the θ and Φ-values, as was
referred in the introduction. On the contrary to what is employed
by Casini et al. in [13], which uses an improved algorithm, this work
exploits a simple linear equation system shown in (1) and recursively
applies it to a dual-series network to determine the demanded network
device values. It is important to notice that no effort for improving
efficiency is demanded, since the basic 2 × N dual-series network
configuration requires no power dissipating terminated loads itself.
The only amount of power being lost is the part that is unavoidably
dissipated on the power combiners connected at the antenna ports,
however, these combiners do not contribute to the formation of the
output amplitude/power distribution. Moreover, the present design
procedure offers comparative advantages, such as the straight-forward,
time and resources-saving design for any number of antennas or input
(beam) ports and for any arbitrary output amplitude distribution.

Lastly, it must be made clear that the circuit synthesis and design
procedure presented in this section could be readily applied for the
design of networks with uniform amplitude distributions. Although a
conventional Nolen matrix could be designed instead, the dual-series
nature of the networks presented herein makes the determination of θ
and Φ-values much easier.

3. DESIGN EXAMPLES

In order to verify the design concept, several design architectures were
investigated. Complete networks were designed and simulated. All
networks are able to create tapered output distributions, producing
low SLL antenna array radiation patterns. The circuits were designed
in microstrip form. The Φ-devices phase shifters were realized using
meandered microstrip lines of appropriate electrical length. For the θ-
devices directional couplers, a topology with the ability to produce high
output power division ratio was used. This feature is critical for the
formation of tapered output distributions producing low SLL patterns.
The schematic diagram of the coupler circuit is presented in Figure 6.
Two cascaded 3 dB 90◦ (branch line) couplers are connected through
the −θ◦ and +θ◦ phase shifters. The value of θ determines the output
amplitude division ratio. Additional phase shifters (−90◦ and +90◦)
are needed to create the proper phase progression between the output
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(a)

(b)

Figure 6. Schematic diagram of the coupler circuit used in the
designs. (a) Port 1 excitation producing a sin θ/ cos θ output power
ratio with an 180◦ phase difference between output ports. (b) Port 4
excitation producing a sin θ/ cos θ output power ratio with a uniform
phase distribution.

ports, according to Figure 2. The output amplitude division ratio can
be inverted, if the complementary value of θ is used (values shown in
parentheses). The analytical design procedure and simulation results
are presented in the next sections.

3.1. 4 × 4 Nolen Matrix Based Network Design and
Measurement

The simplest network that can be designed using the previously
described procedure is a 4 × 4 network. A −30 dB Chebyshev
distribution was chosen for a low SLL radiation pattern, whereas the
phase distributions produced by the excitation of the input ports are

Table 1. Theoretical normalized amplitude and power coefficients of
the −30 dB Chebyshev distribution.

Antenna

elements

Normalized

amplitude

distribution

Normalized

power

distribution

(dB)

A1 0.429 0.184 −7.35

A2 1 1 0

A3 1 1 0

A4 0.429 0.184 −7.35
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similar to those produced by a corresponding 4 × 4 Butler matrix
(1R, 2R, 1L, 2L beams), namely four phase sequences with phase
steps of ±45◦ (1L and 1R beams) and ±135◦ (2L and 2R beams),
respectively. Network’s θ and Φ-values are determined using the
amplitude coefficients given by the −30 dB Chebyshev distribution,
presented in Table 1. Figure 7 shows the schematic diagram of the
4 × 4 network, built by combining two separate 2 × 4 subnetworks.
The first 2 × 4 subnetwork is designed for the 1R and 2L beams,
whereas the second subnetwork is designed for the 1L and 2R beam
ports. The input (beam) ports cannot be paired randomly; only
the specific group of pairs is feasible, due to the limitations imposed
by the conservation of energy principle. In other words, not any
random combination of a pair of ports can be used to form a
subnetwork. Moreover, as it was mentioned in Section 2.2, since all
beams share the same array amplitude excitation (−30 dB Chebyshev),
the corresponding directional couplers (θ-values) will be the same for
each 2× 4 subnetwork as shown in Figure 7. On the other hand, since
each input port should activate a beam with different orientation in
space, which is provided by a different phase sequence excitation, the
corresponding phase shifters (Φ-values) will be different for each input
port (Figure 7). Thus, when the first subnetwork is designed, the

Figure 7. Schematic diagram of the 4×4 network, build by combining
two 2× 4 subnetworks according to Figure 5(a).
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second can be designed by just inverting the corresponding Φ-values,
whereas the θ-values remain the same. For example, the first row of
the 1R-2L subnetwork demands for Φ-values equal to −135◦, while the
attached input port is the 1R beam port. The corresponding input port
of the 1L-2R subnetwork is the 1L beam port, which creates an output
phase progression with the same absolute value but with an inverse
sign (+45◦) to the one produced by the 1R beam port (−45◦). Thus,
the Φ-values of the first row of the 1L-2R subnetwork will have the
same absolute value but inverse sign (+135◦) with the corresponding
ones of the 1R-2L subnetwork (−135◦).

As mentioned above, the basic part of the network design is the
coupler circuit. Figure 8 shows the microstrip layout of one such
coupler used in the network, where the −θ◦ and +θ◦ phase shifts are
implemented using meandered microstrip lines with the appropriate
electrical lengths. The additional ±90◦ phase shifts at the outputs are
incorporated into the Φ phase shifts and the microstrip lines connecting
the cascaded couplers of the network.

Figure 8. Microstrip layout of one of the coupler circuits.

A photograph of the fabricated complete network prototype is
shown in Figure 9. Design frequency was set at 3 GHz, intending to
develop a network for S-band applications. The circuit was developed
in microstrip technology on a Rogers 4003C substrate with a dielectric
constant εr = 3.38, thickness h = 0.508mm and loss tangent tan δ =
0.0021. Surface mount resistor loads connected to ground through via
pads were used to terminate the unused coupler ports. In order to
achieve a better termination condition and a spatial symmetry, two
100Ω SMT chip resistors connected in parallel were used, instead
of a series 50Ω one. Input-beam ports are named 1R, 2R, 1L, 2L
(corresponding to a Butler matrix), whereas A1 to A4 ports are the
output-antenna ports. In this example, Wilkinson combiners were used
at the output ports (antenna inputs), trying to minimize the number
of via pads (needed for the termination of the hybrid couplers’ fourth
port).
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Figure 9. Photograph of the fabricated microstrip prototype 4 × 4
Nolen matrix based network.

The design procedure for the complete network included ADS
(Agilent) circuit design, optimization and simulation, along with
Momentum electromagnetic simulation (MoM) of each one of the
couplers and the Φ-value microstrip lines (as the one in Figure 8).
ADS circuit simulation was used for the whole network, due to the high
demands of computational resources needed for MoM electromagnetic
simulation of complicated and electrically large networks.

Table 2 presents the theoretical, ADS (circuit) and MoM
(electromagnetic) simulated (at the center frequency of 3 GHz) θ-
values and output power division ratios of each one of the couplers
of the dual-series networks of Figure 9, as the example shown in
Figure 8. Table 2 shows a very good agreement between the ADS and
MoM simulated coupler power division ratios and θ-values with their
theoretically defined counterparts. Thus, ADS circuit simulation can
be adopted for simulating more complicated networks.

In order to have a better estimate of the complete network
performance, we performed a Moment Method (MoM) electromagnetic
simulations for the two separate dual-series (2×4) subnetwork layouts
(1R-2L and 1L-2R, Figure 7), at the center frequency f = 3 GHz.
Electromagnetic simulation includes all physical phenomena that
cannot be taken into account in circuit simulation (e.g., parasitics and
mutual coupling). The results are listed in Tables 2 and 3. It can be
seen that the return loss (Sii) is below −28 dB, whereas the amplitude
distribution is in a very good agreement with theory (Table 1).
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Table 2. Theoretical, ADS and MoM simulated θ-values and output
power division ratio of the couplers.

Theoretical

coupler

θ-value (◦)

Theoretical

output

power

division

ratio (dB)

ADS

simulated

coupler

θ-value (◦)

ADS

simulated

output

power

division

ratio (dB)

MoM

simulated

coupler

θ-value (◦)

MoM

simulated

output

power

division

ratio

(dB)

66.93 7.41 69 7.64 67.86 7.48

42.6 0.73 46.2 0.74 40.95 0.7

16.2 10.75 15.17 10.75 15.7 10.69

57.88 4.04 60.76 3.97 59.14 4.09

16.86 10.37 16.18 10.36 16.56 10.34

Table 3. MoM results for the separate dual-series subnetworks at
center frequency f = 3GHz.

Normalized Amplitude (dB)

Beam

port
S ii (dB) A1 A2 A3 A4 A1 A2 A3 A4

1R −34.6 0.4 0.95 1 0.44 −7.96 −0.45 0 −7.1

2L −28.7 0.45 0.98 1 0.45 −6.9 −0.18 0 −6.9

1L −34.1 0.41 0.96 1 0.43 −7.7 −0.35 0 −7.3

2R −29.3 0.42 0.97 1 0.45 −7.53 −0.26 0 −6.9

3.1.1. Verification of the Network through Measurements

Figure 10 shows the comparison between ADS simulated and measured
results of the input return loss (Sii) magnitude, for the four input
(beam) ports, as they are depicted in Figure 9. It can be observed
from Figure 10 that the values of the simulated input return loss are
kept well under −35 dB for the center frequency of 3 GHz, whereas
they remain below −20 dB for about 150–200 MHz around the center
frequency. Correspondingly, measured results show that the input
return loss values are kept below −20 dB at the center frequency
for all ports, while they remain under −15 dB for about 300 MHz
around the center frequency (≈ 2.8–3.1GHz), except for the 2R
port case, which presents multiple fluctuations (but still remaining
under −10 dB at 2.8–3.1 GHz). Thus, the results are considered
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(a) (b)

Figure 10. Comparison between simulated and measured input return
loss (Sii) magnitude. (a) 1R and 2R input (beam) port cases. (b) 1L
and 2L input (beam) port cases.

(a) (b)

Figure 11. Ideal versus simulated transmission coefficients
magnitudes from input ports to the antenna ports. (a) 1R beam port
excitation. (b) 2R beam port excitation.

satisfying. Generally, any discrepancies observed between simulated
and measured results are mainly due to the inability of the simulated
model to accurately reflect all possible physical phenomena. Usually,
in network (circuit) simulations some parasitic reactances are missed as
well as some unpredictable mutual couplings occurring due to closely
located microstrip line sections in the final layout. Moreover, possible
fabrication inaccuracies regarding the dimensions of the microstrip
lines could also contribute to discordances between simulation and
measurement.

To produce a low SLL radiation condition, the −30 dB Chebyshev
distribution that was chosen, must be achieved. Figure 11 presents
the simulated S-parameters results of the transmission coefficients
magnitude to the four output-antenna ports, A1 to A4 (Figure 9) when
1R and 2R beam ports are excited. The ideal theoretical curves are also
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depicted, for the center (A2, A3) and edge (A1, A4) antenna elements.
The ideal magnitude value of the transmission coefficient is −6.8 dB
for the center antenna elements and −14.2 dB for the edge antenna
elements. It must be stated again that even the ideal values include
3 dB dissipative losses due to the use of Wilkinson power combiners in
the network. These losses are not unexpected, since they are compliant
with the theory of lossy low SLL multibeam networks, referred in
previous sections.

Simulation results present a maximum deviation (losses) of about
2.5 dB from the ideal values, for the worst case of A1 antenna element.
As it was expected, the antenna elements which are placed further from
the input port (A1, A2) present greater deviation due to the fact that
the losses are continuously increasing as the signal path length from the
input increases. This is generally observed in all serial networks. Since
the A1 and A4 antennas are placed symmetrically to the array center,
they must be fed with the same power. However, the A1 antenna
element will be fed with a smaller amount of power than the A4,
due to its larger path length from the input port. If that effect is
large enough to be able to deform significantly the predefined output
amplitude distribution, it must be taken into account during the initial
stages of the design. That is, the initial amplitude distribution must
be redefined, dictating gradually larger percentages of power to be
delivered to the antenna elements placed further, in order to account
for the expected losses at their corresponding paths. Practically, that
means that the network must be designed in order to feed these
elements with an amount of power larger than that defined by the
theoretical distribution. This additional amount of power is the one
that will be dissipated along the paths leading to the antenna elements,
compensating for losses that would deform the initial amplitude/power
distribution and thus, balancing the effects of long signal paths. As a
result, the furthest placed antenna elements will be fed with the proper
amount of power dictated by the initial theoretical amplitude/power
distribution.

Theoretical data for the transmission coefficients magnitudes
derived by the −30 dB Chebyshev distribution, dictate that the
amplitude ratio between the center and edge antenna elements must
be equal to 7.35 dB (Table 1). Simulations showed that this ratio is
7.2 dB for the 1R beam port, 6.9 dB for the 2R beam port, 7.3 dB for
the 1L beam port and 6.7 dB for the 2L beam port, hence they are
indeed satisfactory.

Two comparative examples for the transmission coefficients data
are presented in Figure 12, showing simulated and measured results,
for two characteristic cases of 1R and 2R port excitation. Deviations
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(a) (b)

Figure 12. Simulated versus measured transmission coefficients
magnitudes for all the A1-A4 antenna ports. (a) 1R beam port
excitation. (b) 2R beam port excitation.

of measured values from the simulated ones are due to microstrip,
substrate and microwave connector losses. These losses range from
about 1 dB to 2.5 dB, for the worst cases. Although they are
significant, they can be balanced by using power amplifiers in the
transmitter, as most modern systems do. The power amplifiers can
be used at the input port level, or more efficiently, at the antenna
element level, creating an active antenna array configuration and
thus, increasing system’s power efficiency. Table 4 summarizes the
normalized amplitude distributions at the output-antenna ports, for
all four beam port cases, as they are derived from the simulated and
measured S-parameters data (transmission coefficients magnitudes).
Table 5 presents the simulated and measured phase difference values

Table 4. Normalized amplitude distributions created by each input-
beam port at the output-antenna ports.

Normalized amplitude distribution
(theoretical values in parentheses)

Beam port A1 (0.429) A2 (1) A3 (1) A4 (0.429)

1R
Sim. 0.398 0.93 1 0.455
Meas. 0.392 0.94 1 0.518

2L
Sim. 0.443 0.95 1 0.468
Meas. 0.359 0.91 1 0.411

1L
Sim. 0.375 0.92 1 0.455
Meas. 0.385 0.93 1 0.519

2R
Sim. 0.418 0.95 1 0.468
Meas. 0.352 0.94 1 0.430
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Table 5. Theoretical, simulated and measured phase difference values
between antenna ports.

Beam Theoretical Simulated ∆ϕ (◦) Measured ∆ϕ (◦)

port ∆ϕ (◦) A2-A1 A3-A2 A4-A3 A2-A1 A3-A2 A4-A3

1R −45 −45.4 −45.2 −45.1 −47.6 −50.4 −44.2

2L +135 +135 +134.9 +134.8 +130.9 +139.5 +123.8

1L +45 +44.6 +44.8 +44.9 +48.6 +42.9 +38.4

2R −135 −135 −135.1 −135.2 −143.2 −139.1 −133.4

between adjacent antenna ports in comparison with the theoretical
ones. Despite the afore-mentioned losses that the measured data
present, the amplitude ratio between center and edge elements is well
maintained to acceptable levels. That means that the Chebyshev
distribution is preserved, which is the most critical feature for the
creation of low SLL radiated beams. The derived average measured
amplitude ratio between center and edge elements is 6.7 dB for the 1R
beam port, 7.94 dB for the 2R beam port, 6.7 dB for the 1L beam port
and 7.65 dB for the 2L beam port.

It must be noted that, it was decided not to compensate the design,
in order to balance the possible effects of the increasing losses for
the antennas placed further from the input ports, as it was discussed
earlier. Simulated data in Tables 3 and 4 showed that the output
amplitude distribution is not critically deformed, thus, the effects on
the radiation pattern are not expected to be crucial, as it will be shown
in the next section. Moreover, although measured results for the A1
and A2 antenna ports present some deviations, they do not impose
critical deformations in the radiation patterns.

Finally, due to the relatively increased losses of the network,
it is very useful to evaluate its power efficiency. Due to the use
of the Wilkinson power combiners which add a 3 dB loss, network’s
maximum efficiency is 50%. Under this condition, the efficiency of
the network is expected to be below 50% (due to microstrip, substrate
and connector losses). Thus, network’s efficiency was calculated for
both simulation and measurements cases, comparing simulated and
measured S-parameters (transmission coefficients) magnitudes with
the ideal ones. The calculated values were reduced by 50%, to include
the dissipative losses that are already present in the ideal curves
(Figure 11). As a result, by exploiting both simulated and measured
data, the total power efficiency calculated from simulated data is about
33%, while the total power efficiency calculated from measured data is
about 27.5%. Although these numbers look relatively low, the losses
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can be balanced using power amplifiers, either at the network’s input
port level or preferably at the antenna element level, in an active
antenna configuration, as already mentioned in this section.

3.1.2. Radiation Patterns of the 4-element Linear Phased Array

The simulated and measured data shown in Tables 4 and 5, derived
from the simulated and measured S-parameters respectively, were used
as input data (excitation coefficients) in an antenna array simulation
tool to produce the corresponding radiation patterns. Rectangular
microstrip antenna elements were used to form the antenna array,
placed initially at an inter-element distance (d) of half free-space
wavelength (λo/2). Even though it is assumed that d = λo/2 is the
condition to avoid grating lobes, [2, Page 27], it is actually a situation
where the grating lobe maximum is oriented towards the horizon
(θp = 90◦). However, an arbitrary part of this lobe remains within the
element pattern. How strong this contribution will be depends on the
scan angle (θo) and the antenna element beamwidth. As the scan angle
is increased (main lobe maximum turned away from broadside), while
the antenna element pattern remains broadside as usual, this grating
lobe contribution is also increased. Thus herein a more strict condition
is adopted, namely to further decrease the inter-element distance so
that the grating lobe contribution not to exceed the level of the highest
sidelobe.

In order to prove the above concept, first d = λo/2 is elaborated.
Figure 13 shows comparison of the simulated radiation patterns of

Figure 13. Comparison of simulated radiation patterns produced
by simulated and measured S-parameters data, for an inter-element
distance d = λo/2.
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the four beams, produced by both simulated and measured data.
Radiation patterns produced by the measured data depict some
deviations from the results of simulated data, as expected. Firstly,
it must be noted that the use of microstrip patch elements induces
a pattern deterioration to the radiated beams, especially to the far
outermost ones (2R, 2L), because the patch radiation pattern is not
omnidirectional, but its maximum remains at broadside; thus, its
maximum value (and directivity) is reduced with scanning angle. This
condition is depicted in Figure 13, where the patch radiation pattern
is depicted as the envelope of the array radiated beams. Although this
fact imposes a relative degradation to the 2R and 2L beam maxima,
along with their corresponding grating lobes, it relatively increases the
first and second sidelobe levels, which are placed closer to broadside
(where the patch radiation pattern has its maximum value). Moreover,
as can be observed in Figure 13, the patch effect produces an SLL lower
than expected by 1–2 dB for the simulated data patterns, leading to a
value of about −32 dB, for the 1R and 1L beam cases. Likewise, the
1L beam produced by the measured data presents an SLL of about
−28 dB, and the 1R measured data beam SLL is at about −25 dB.
On the other hand, the 2R and 2L beams produced by the simulated
data present an SLL of about −24 dB, due to the patch effect, whereas
the grating lobe contribution is at −10 dB with respect to the beams’
maxima (−3 dB level). Correspondingly, the 2R beam produced by
the measured data has an SLL at about −27 dB (with respect to the
beam’s maximum), whereas the grating lobe level is at about −9 dB
(with respect to the beam’s maximum; −12 dB in absolute value). The
2L beam produced by the measured data presents an SLL of about
−19 dB, while grating lobe level is preserved at −10 dB (with respect
to the beam’s maximum). The −3 dB line is shown as a lower limit for
both the Crossover Level (CL) and the beam maxima value. It can be
seen that the CL for the 1R and 1L beams (both from simulated and
measured data) has been increased to the value of −2 dB, whereas
the beams are not orthogonal. In similar networks with uniform
amplitude distributions (e.g., Butler and Nolen matrix) the CL is at
about −4 dB, whereas the beam orthogonality is maintained. As for
the beam maxima of the 2R and 2L beams (both from simulated and
measured data), which are degraded to −3 dB, this can be surpassed
by using a power control system. That is, the power transmitted in
these beams can be respectively increased, balancing the effect caused
by the patch antenna. Moreover, an important feature is that the
beams’ maxima angles are maintained, since there is an almost perfect
coincidence between simulated and measured data results. Finally,
most nulling angles are also preserved, with values lower than −35 dB
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for the simulated data and lower than −25 dB for the measured data
radiation patterns, for all beam cases.

However, among the above characteristics, the one that constitutes
the radiation patterns presented in Figure 13 is the relatively high
grating lobe level contribution for the outermost beams. The most
common method for the reduction of grating lobe level is the decrease
of inter-element distance (d), aiming at reducing its contribution to
the level of the highest sidelobe [1]. Less common and more complex
methods include the use of angular filters [2], or placement of radiation
pattern nulls at the grating lobe angle [1]. Although controlling the
inter-element distance of the array is the simplest and most effective
way to reduce the undesirable grating lobe level, in fact, decreasing the
inter-element distance places the rising grating lobe out of the visible
space. Generally, as mentioned above, the inter-element distance can
be adjusted so that the grating lobe level is equal to the SLL. However,
decreasing the inter-element distance also causes degradation in the
array directivity. Hence, a careful compromise must be sought to
decrease it only as far as required.

Thus, in this work, in order to suppress the grating lobe level
contribution, the inter-element distance d was gradually decreased until
the simulation results were satisfying. The final value of d was chosen
equal to 2λo/5. The corresponding simulated radiation patterns using
both simulated and measured data are presented in Figure 14. As can
be observed, the beams’ maxima angles are slightly shifted, comparing

Figure 14. Comparison of simulated radiation patterns produced
by simulated and measured S-parameters data, for an inter-element
distance d = 2λo/5.
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with Figure 13. Especially for the 2R and 2L beams, due to the fact
that their maxima are shifted about 7◦ towards endfire, they get under
further degradation, reaching a maximum value of −4 dB (−3 dB in
Figure 13). For the simulated data, the grating lobe level is reduced
to about −17 dB (with respect to the −4 dB of the beams’ maxima).
For the measured data, the corresponding grating lobe level is under
−14 dB (with respect to the beams’ maxima), being kept under −18 dB
(in absolute values). Thus, there is an overall improvement (reduction)
of more than 5 dB in grating lobe contribution. Moreover, the decrease
in inter-element distance imposes an increase in Half-Power Beamwidth
(HPBW) of the beams, which is increased from an overall average
(simulated and measured data) value of 32.1◦ to the value of 37.3◦
(5.2◦, ≈ 16%). Thus, a consequent decrease in directivity is observed,
which is decreased from an overall average value of 11.3 dBi to the
value of 10.8 dBi (0.5 dB, ≈ 4%).

Although further decrease in inter-element distance would produce
an even lower grating lobe level, it would create beams with extremely
high HPBW and low gain/directivity. Thus, the value of d = 2λo/5
was chosen in order to compromise all the above conditions.

Lastly, it must be emphasized that if the effects of the patch
and the losses on the SLL should be removed, a 3–5 dB even lower
amplitude distribution should be chosen at the initial design level (e.g.,
−33 dB Chebyshev), in order to balance the expected patch effect and
microstrip fabrication losses.

3.2. 8 × 8 Nolen Matrix Based Network

The same design procedure, as analyzed in the previous section, can
be appliedto the implementation of larger networks. This section
exemplifies the design of an 8×8 network composed of four dual-series
subnetworks and synthesized gradually as explained in Section 2.2 and
shown in Figures 4–5. The beams created by this network are similar
to the beams created by the corresponding 8 × 8 Butler matrix (1R,
2R, 3R, 4R, 1L, 2L, 3L, 4L beams), producing output phase sequences
of ±22.5◦ (1L and 1R beams), ±67.5◦ (2L and 2R beams), ±112.5◦
(3L and 3R beams) and ±157.5◦ (4L and 4R beams) respectively,
whereas a −30 dB Chebyshev distribution was also chosen for a low
SLL operation. The theoretical normalized amplitude and power
coefficients of the −30 dB Chebyshev distribution are presented in
Table 6.

The couplers’ θ-values for the dual-series subnetworks are depicted
in Table 7. They are the same for all four dual-series (2 × 8)
subnetworks, due to the same output amplitude distribution produced,
as it was mentioned in previous sections. Due to the constraints
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Table 6. Theoretical normalized amplitude and power coefficients of
the −30 dB Chebyshev distribution (8× 8 network).

Antenna

elements

Normalized

amplitude

distribution

Normalized

power

distribution

(dB)

A1 0.262 0.069 −11.6

A2 0.519 0.269 −5.7

A3 0.812 0.66 −1.8

A4 1 1 0

A5 1 1 0

A6 0.812 0.66 −1.8

A7 0.519 0.269 −5.7

A8 0.262 0.069 −11.6

Table 7. θ-values of the coupler circuits for the formation of the
−30 dB Chebyshev amplitude distribution.

θ-values

θ1,1 θ1,2 θ1,3 θ1,4 θ1,5 θ1,6 θ1,7

63.19◦ 54.4◦ 45.05◦ 35.29◦ 25.13◦ 15.18◦ 7.54◦

θ2,1 θ2,2 θ2,3 θ2,4 θ2,5 θ2,6

58◦ 49.4◦ 37.5◦ 26.4◦ 15.54◦ 7.62◦

Table 8. Φ-values needed for all four dual-series subnetworks (1R-4L,
1L-4R, 2R-3L, 2L-3R).

Φ-values

Dual series (2 × 8) subnetworks Φ1,n row Φ2,n row

1R-4L −157.5◦ +22.5◦

1L-4R +157.5◦ −22.5◦

2R-3L −112.5◦ +67.5◦

2L-3R +112.5◦ −67.5◦

mentioned in previous sections, the only valid dual-series (2 × 8)
subnetworks that can be designed are the 1R-4L, 1L-4R, 2R-3L, and
2L-3R. Accordingly, the phase shifters’ Φ-values for each of the above
2× 8 subnetworks are tabulated in Table 8. Hence, the corresponding
dual-series (2 × 8) subnetworks are obtained. The 2 × 8 subnetworks
are connected in pairs into 4× 8 subnetworks. Figure 15(a) shows the
schematic diagram of the 1R-4L-2R-3L 4 × 8 subnetwork. Obviously,
the other 4 × 8 subnetwork is created using the rest two 2 × 8
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(a)

(b)

Figure 15. (a) Schematic diagram of the 1R-4L-2R-3L 4 × 8
subnetwork, composed of the 1R-4L and 2R-3L dual-series (2 × 8)
subnetworks. (b) Schematic diagram of the whole 8 × 8 matrix
configuration, composed of the two 4× 8 subnetworks.

subnetworks, meaning that it is the 1L-4R-2L-3R subnetwork. In
turn, the two 4 × 8 subnetworks are connected using the Wilkinson
power combiners to create the whole 8 × 8 matrix configuration, as
presented in Figure 15(b), in accordance with the general case shown
in Figure 5(b).

Figure 16 shows the simulated (using ADS) transmission
coefficients from the input ports to the antenna elements, of the
ideal 8 × 8 network, without microstrip losses. Table 9 lists the
normalized output amplitude/power distribution values, derived from
the simulated results of Figure 16.
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Figure 16. Simulated transmission coefficients from the input ports
to the antenna elements, of the ideal (ignoring microstrip losses) 8× 8
network.

Table 9. Simulated normalized amplitude and power coefficients of
the −30 dB Chebyshev distribution (8× 8 network).

Antenna element Normalized amplitude Normalized power (dB)

A1 0.263 0.069 −11.6

A2 0.516 0.266 −5.75

A3 0.808 0.653 −1.85

A4 1 1 0

A5 1 1 0

A6 0.808 0.653 −1.85

A7 0.516 0.266 −5.75

A8 0.263 0.069 −11.6

3.2.1. Radiation Patterns of the 8-element Linear Phased Array

Figure 17 shows the radiation patterns produced by the simulation of
an ideal 8 × 8 network feeding an eight-element patch antenna array
with an inter-element distance d = λo/2. The patch antenna effect is
again observed, placing the 3R, 4R, 3L and 4L beams maxima below
the limit level of −3 dB (once again the transceiver power control
mechanism must be utilized in order to exploit these beams). SLL
is well kept under −30 dB, apart from the grating lobes that appear in
the 4R and 4L beams. The grating lobe level is at −10 dB, with respect
to the outermost beam’s maximum (−6 dB). The Crossover Level of
the beams closer to broadside (1R and 1L), suffering no degradation,
is at −2 dB.

In order to reduce the relatively high grating lobe level of the
outermost beams in Figure 17, the inter-element distance (d) is again
adjusted in order to achieve a grating lobe level equal to the sidelobe
level. Successive decreases in d and corresponding simulations led to a
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value of d = 17λo/40. The simulation results are shown in Figure 18.
Comparing with the results of Figure 17, it is observed that the average
HPBW of the 8 beams is increased from 18.9◦ to 21.9◦ (3◦, ≈ 16%),
corresponding to an average directivity degradation from 13.9 dBi to
13.6 dBi (0.3 dB, 2%).

In this case, due to the larger electrical length of the array, the
increase in HPBW (and decrease in gain/directivity) is not substantial,
in comparison with the 4-element array of the previous section. Again,
a slight angular shift in the beams’ maxima is observed, leading the
3R and 3L beams below the −3 dB limit. However, the grating lobe
level of the 4R and 4L beams is reduced to −20 dB with respect to the
corresponding beams’ maxima (−7 dB).

Figure 17. Simulated radiation patterns produced by an ideal 8× 8
network, for an inter-element distance d = λo/2.

Figure 18. Simulated radiation patterns produced by an ideal 8× 8
network, for an inter-element distance d = 17λo/40.
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3.3. 4 × 8 Nolen Matrix Based Network Design for
Direction-of-arrival Measurements

The previously described design procedure can also be applied to
networks with an unequal number of input (M) and output (N) ports.
A design example of a 4 × 8 network will be given herein. Since
the network is a four input-beam port design, the beams that can
be produced are those of a 4 × 4 network (1R, 2R, 1L, 2L). The
network is composed of two 2 × 8 subnetworks, whereas a −30 dB
Chebyshev distribution is again chosen for a low SLL pattern. The θ-
values of the 2× 8 subnetworks are those given in Table 7 for the 8× 8
network, whereas the Φ-values are the same with the 4 × 4 network
case (Figure 7).

The complete ideal (without microstrip losses) 4× 8 network was
simulated using ADS, and as before, the S-parameters data (amplitude
and phase of transmission coefficients) were used to produce the
antenna array radiation patterns. Figure 19 shows the simulated
radiation patterns of the four beams, for an inter-element distance
d = λo/2.

As can be seen from Figure 19, the 1R and 1L beams are placed
at the same angular positions with the corresponding beams of a 4× 4
network (Figure 13), whereas the 2R and 2L beams are displaced by
about 6◦ towards endfire, in comparison with Figure 13. Moreover, the
2R and 2L beams maxima are now well below the −3 dB limit level,
having a maximum value of −4 dB. However, the most critical feature
of the beam cluster of Figure 19 is the extremely low Crossover Level
of the beams, which for the 1R and 1L beams almost reaches the level

Figure 19. Simulated radiation patterns produced by an ideal 4× 8
network, for an inter-element distance d = λo/2.
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of −10 dB. This is due to the fact that the beams are placed far apart
from each other, with angular distances exceeding their half-power
beamwidth. However, the grating lobe level for the outermost beams
(2R and 2L) is below −23 dB (with respect to the beams’ maxima),
thus significantly improved over previous designs with the same inter-
element distance (d = λo/2), e.g., the 8 × 8 network (Figure 17).
Nevertheless, the sparse beam cluster of Figure 19 is unacceptable
for almost any communication application, since it provides a very low
scanning coverage quality of the interested angular sector. That is, the
available gain around the CL points is much lower than the maximum
and the radiation pattern intensity is quite low (¿ −3 dB) for the
largest part of the angular directions between beams’ maxima. These
low gain angular windows constitute a large amount of the scanning
sector, creating a sparse scanning with many almost-blind angles. Even
though this design is not well suited for a complete angular coverage, it
could be best utilized in source tracking, e.g., for Direction-Of-Arrival
(DOA) measurements.

3.4. 4 × 8 Nolen Matrix Based Network Using the
Switched-line-phase-shifter Technique

A solution to the sparse beam coverage problem could be the
exploitation of Switched-Line-Phase-Shifter (SLPS) technique, as used
and described in our previous work [17, 24]. Figure 20 shows the
schematic diagram of the 4 × 8 network implementing the SLPS

Figure 20. Schematic diagram of the 4×8 network implementing the
SLPS technique.
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technique. The main idea is to connect additional phase shifts (Φ1-
Φ8) through Single-Pole Dual-Through (SPDT) switches at the output
ports, in order to be able to create additional phase progressions
between the output ports. Each SLPS is composed of two SPDTs and
two separate signal paths of different electrical length. The first path
introduces no additional phase shift to the signal, so when it is chosen,
the conventional beams of Figure 19 can be created. However, when
the Φ-paths (Figure 20) are chosen at the SLPSs, each input-beam port
excitation produces a new beam which is displaced in space and points
to a new angular direction. In this design, the values of the additional
phase shifts are selected so that each new beam is displaced to the
right of the corresponding conventional beam, excited by the respective
input-beam port and points at the middle of its two neighboring beams
angular distance. Figure 21 shows the simulated radiation patterns
of an ideal 4 × 8 network implementing the SLPS technique. As an
example, the (1R, 2R) beam is created when the 1R input (beam)
port is excited and the additional phase shifts are selected at the
outputs. Its maximum points at the middle of the angular distance
between the 1R and 2R beams. It can be seen, that 3 new beams are
created, increasing the total number to 7. The CL is highly increased
to −2 dB for the central 1R, 1L and (1L, 1R) (broadside) beams, while
the beam cluster is now densified and the scanning coverage quality
of the angular sector is improved significantly. The two far outermost
beams are still kept below the −3 dB limit, but this can again be solved
with a power control system.

Figure 21. Simulated radiation patterns of an ideal 4 × 8 network
implementing the SLPS technique, for an inter-element distance d =
λo/2.
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3.5. Comparison between the 8 × 8 and 4 × 8 Designs

It would be very interesting to make a comparison of the 4×8 network
of Figure 20 with an 8× 8 network, as it was presented in the previous
section. Firstly, although the 8×8 network is able to create 8 radiated
beams (Figures 17 and 18) instead of 7, the 4× 8 network using SLPS
circuitry is able to produce a broadside beam ((1L, 1R)) (Figure 21),
which it does not exist in the conventional 8 × 8 beam cluster. The
total angular sector of the 4 × 8 network, measuring from the left
−3 dB point of the far left beam to the right −3 dB point of the far
right beam, is about 110◦, while for the 8 × 8 network is about 130◦.
The Crossover Level is almost similar for both beam clusters (−2 dB),
whereas the grating lobe level is significantly lower in the 4×8 network
case (especially when keeping inter-element distance equal to λo/2).
More explicitly, the grating lobe level of the 8× 8 network is at about
−10 dB (Figure 17), whereas for the 4 × 8 network is at −23.5 dB,
always with respect to the corresponding beam’s maximum, which is
at −6 dB and −4 dB respectively. Thus, the 4 × 8 network could be
preferable over an 8× 8 one in applications where a narrower scanning
sector is required and/or where the grating lobe level is of significant
importance.

4. CONCLUSION

The analytical procedure of synthesis, design and measurement of a
new type of Nolen matrix based series feed beamformers was presented.
The networks are designed using a dual-series subnetwork as the basic
building block. The emphasis was given on the design of tapered
amplitude distribution networks for low SLL multibeam antennas.
Theoretically, any random amplitude distribution can be implemented
using the proposed architecture. The series feed method offers some
advantages over the corporate, such as the avoidance of microstrip
crossovers. Measurement results for the fabricated 4 × 4 prototype
are quite satisfying. Simulation results for larger networks, such as the
8×8 and 4×8, were given. Future work includes the design, fabrication
and measurement of larger networks with 4–8 inputs and 8–16 outputs
for X- to Ka-band system applications.
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