1. Harrington, J. A. and Y. Matsuura, "Review of hollow waveguide technology," Proc. SPIE,, Vol. 2396, 4-14, 1995.
doi:10.1117/12.208395
2. Harrington, J. A., D. M. Harris, and A. Katzir, Biomedical Optoelectronic Instrumentation, 4-14, 1995.
doi:10.1117/12.208395
3. Harrington, J. A., "A review of IR transmitting, hollow waveguides," Fiber and Integrated Optics, Vol. 19, 211-228, 2000.
doi:10.1080/01468030050058794
4. Marhic, M. E., "Mode-coupling analysis of bending losses in IR metallic waveguides," Appl. Opt., Vol. 20, 3436-3441, 1981.
doi:10.1364/AO.20.003436
5. Croitoru, N., E. Goldenberg, D. Mendlovic, S. Ruschin, and N. Shamir, "Infrared chalcogenide tube waveguides," Proc. SPIE, Vol. 618, 140-145, 1986.
doi:10.1117/12.961107
6. Novotny, L. and C. Hafner, "Light propagation in a cylindrical waveguide with a complex, metallc, dielectric function," Physical Review E, Vol. 50, 4094-4106, 1994.
doi:10.1103/PhysRevE.50.4094
7. Yener, N., "Advancement of algebraic function approximation in eigenvalue problems of lossless metallic waveguides to infinite dimensions, Part I: Properties of the operator in infinite dimensions," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 12, 1611-1628, 2006.
doi:10.1163/156939306779292363
8. Yener, N., "Algebraic function approximation in eigenvalue problems of lossless metallic waveguides: Examples," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 6, 731-745, 2006.
doi:10.1163/156939306776143442
9. Khalaj-Amirhosseini, M., "Analysis of longitudinally inhomogeneous waveguides using Taylor's series expansion," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 1093-1100, 2006.
doi:10.1163/156939306776930286
10. Khalaj-Amirhosseini, M., "Analysis of longitudinally inhomogeneous waveguides using the Fourier series expansion," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 10, 1299-1310, 2006.
doi:10.1163/156939306779276758
11. Reutskiy, S. Y., "The methods of external excitation for analysis of arbitrarily-shaped hollow conducting waveguides," Progress In Electromagnetics Research, Vol. 82, 203-226, 2008.
doi:10.2528/PIER08022701
12. Jackson, J. D., Classical Electrodynamics, 3rd Ed., John Wiley and Sons, 1999.
13. Hildebrand, F. B., Advanced Calculus for Applications, 2nd Ed., Prentice Hall Inc., 1976.
14. Collin, R. E., Foundation for Microwave Engineering, McGraw-Hill, New York, 1996.
15. Yariv, A., Optical Electronics, 3rd Ed., Holt-Saunders Int. Editions, 1985.
16. Baden Fuller, A. J., Microwaves, Chap. 5, 118{120, Pergamon Press, A. Wheaton and Co. Ltd, Oxford, 1969.
17. Olver, F. W. J., "Royal Society Mathematical Tables, Zeros and Associated Values," University Press Cambridge, 2-30, 1960.
18. Jahnke, E. and F. Emde, "Tables of Functions with Formulae and Curves," Chap. 8, 166, Dover Publications, New York, 1945.
19. The Numerical Algorithms Group (NAG) Ltd., Wilkinson House, , Oxford, UK.
20. Menachem, Z., E. Jerby, and , "Transfer matrix function (TMF) for wave propagation in dielectric waveguides with arbitrary transverse profiles," IEEE Trans. Microwave Theory Tech., Vol. 46, 975-982, 1998.
doi:10.1109/22.701451
21. Vladimirov, V., Equations of Mathematical Physics, 1971.
22. Miyagi, M., K. Harada, and S. Kawakami, "Wave propagation and attenuation in the general class of circular hollow waveguides with uniform curvature," IEEE Trans. Microwave Theory Tech., Vol. 32, 513-521, 1984.
doi:10.1109/TMTT.1984.1132715
23. Croitoru, N., A. Inberg, M. Oksman, and M. Ben-David, "Hollow silica, metal and plastic waveguides for hard tissue medical applications," Proc. SPIE, Vol. 2977, 30-35, 1997.
doi:10.1117/12.271023