Vol. 48
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-01-26
Influence of the Spot-Size and Cross-Section on the Output Fields and Power Density Along the Straight Hollow Waveguide
By
Progress In Electromagnetics Research B, Vol. 48, 151-173, 2013
Abstract
This paper presents a rigorous approach for the propagation of electromagnetic (EM) fields along a straight hollow waveguide with a circular cross section. The objectives are to present the technique to calculate the dielectric profiles and their transverse derivatives in the inhomogeneous cross section of the cylindrical hollow waveguide, and to understand the influence of the spot-size and cross section on the output fields and output power density. The derivation is based on Maxwell's equations. The longitudinal components of the fields are developed into the Fourier-Bessel series. The transverse components of the fields are expressed as functions of the longitudinal components in the Laplace plane and are obtained by using the inverse Laplace transform by the residue method. The separation of variables is obtained by using the orthogonal-relations. These objectives contribute to the application of the model for the straight hollow waveguide.
Citation
Zion Menachem, and Saad Tapuchi, "Influence of the Spot-Size and Cross-Section on the Output Fields and Power Density Along the Straight Hollow Waveguide," Progress In Electromagnetics Research B, Vol. 48, 151-173, 2013.
doi:10.2528/PIERB12112009
References

1. Harrington, J. A. and Y. Matsuura, "Review of hollow waveguide technology," Proc. SPIE,, Vol. 2396, 4-14, 1995.
doi:10.1117/12.208395

2. Harrington, J. A., D. M. Harris, and A. Katzir, Biomedical Optoelectronic Instrumentation, 4-14, 1995.
doi:10.1117/12.208395

3. Harrington, J. A., "A review of IR transmitting, hollow waveguides," Fiber and Integrated Optics, Vol. 19, 211-228, 2000.
doi:10.1080/01468030050058794

4. Marhic, M. E., "Mode-coupling analysis of bending losses in IR metallic waveguides," Appl. Opt., Vol. 20, 3436-3441, 1981.
doi:10.1364/AO.20.003436

5. Croitoru, N., E. Goldenberg, D. Mendlovic, S. Ruschin, and N. Shamir, "Infrared chalcogenide tube waveguides," Proc. SPIE, Vol. 618, 140-145, 1986.
doi:10.1117/12.961107

6. Novotny, L. and C. Hafner, "Light propagation in a cylindrical waveguide with a complex, metallc, dielectric function," Physical Review E, Vol. 50, 4094-4106, 1994.
doi:10.1103/PhysRevE.50.4094

7. Yener, N., "Advancement of algebraic function approximation in eigenvalue problems of lossless metallic waveguides to infinite dimensions, Part I: Properties of the operator in infinite dimensions," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 12, 1611-1628, 2006.
doi:10.1163/156939306779292363

8. Yener, N., "Algebraic function approximation in eigenvalue problems of lossless metallic waveguides: Examples," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 6, 731-745, 2006.
doi:10.1163/156939306776143442

9. Khalaj-Amirhosseini, M., "Analysis of longitudinally inhomogeneous waveguides using Taylor's series expansion," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 1093-1100, 2006.
doi:10.1163/156939306776930286

10. Khalaj-Amirhosseini, M., "Analysis of longitudinally inhomogeneous waveguides using the Fourier series expansion," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 10, 1299-1310, 2006.
doi:10.1163/156939306779276758

11. Reutskiy, S. Y., "The methods of external excitation for analysis of arbitrarily-shaped hollow conducting waveguides," Progress In Electromagnetics Research, Vol. 82, 203-226, 2008.
doi:10.2528/PIER08022701

12. Jackson, J. D., Classical Electrodynamics, 3rd Ed., John Wiley and Sons, 1999.

13. Hildebrand, F. B., Advanced Calculus for Applications, 2nd Ed., Prentice Hall Inc., 1976.

14. Collin, R. E., Foundation for Microwave Engineering, McGraw-Hill, New York, 1996.

15. Yariv, A., Optical Electronics, 3rd Ed., Holt-Saunders Int. Editions, 1985.

16. Baden Fuller, A. J., Microwaves, Chap. 5, 118{120, Pergamon Press, A. Wheaton and Co. Ltd, Oxford, 1969.

17. Olver, F. W. J., "Royal Society Mathematical Tables, Zeros and Associated Values," University Press Cambridge, 2-30, 1960.

18. Jahnke, E. and F. Emde, "Tables of Functions with Formulae and Curves," Chap. 8, 166, Dover Publications, New York, 1945.

19. The Numerical Algorithms Group (NAG) Ltd., Wilkinson House, , Oxford, UK.

20. Menachem, Z., E. Jerby, and , "Transfer matrix function (TMF) for wave propagation in dielectric waveguides with arbitrary transverse profiles," IEEE Trans. Microwave Theory Tech., Vol. 46, 975-982, 1998.
doi:10.1109/22.701451

21. Vladimirov, V., Equations of Mathematical Physics, 1971.

22. Miyagi, M., K. Harada, and S. Kawakami, "Wave propagation and attenuation in the general class of circular hollow waveguides with uniform curvature," IEEE Trans. Microwave Theory Tech., Vol. 32, 513-521, 1984.
doi:10.1109/TMTT.1984.1132715

23. Croitoru, N., A. Inberg, M. Oksman, and M. Ben-David, "Hollow silica, metal and plastic waveguides for hard tissue medical applications," Proc. SPIE, Vol. 2977, 30-35, 1997.
doi:10.1117/12.271023