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ON THE OUTPUT FIELDS AND POWER DENSITY
ALONG THE STRAIGHT HOLLOW WAVEGUIDE

Zion Menachem* and Saad Tapuchi
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Abstract—This paper presents a rigorous approach for the
propagation of electromagnetic (EM) fields along a straight hollow
waveguide with a circular cross section. The objectives are to present
the technique to calculate the dielectric profiles and their transverse
derivatives in the inhomogeneous cross section of the cylindrical hollow
waveguide, and to understand the influence of the spot-size and cross
section on the output fields and output power density. The derivation
is based on Maxwell’s equations. The longitudinal components of
the fields are developed into the Fourier-Bessel series. The transverse
components of the fields are expressed as functions of the longitudinal
components in the Laplace plane and are obtained by using the
inverse Laplace transform by the residue method. The separation
of variables is obtained by using the orthogonal-relations. These
objectives contribute to the application of the model for the straight
hollow waveguide.

1. INTRODUCTION

Various methods for the analysis of cylindrical hollow metallic or
metallic with inner dielectric coating waveguide have been studied in
the literature. A review of the hollow waveguide technology [1, 2] and
a review of IR transmitting, hollow waveguides, fibers and integrated
optics [3] were published. Hollow waveguides with both metallic and
dielectric internal layers have been proposed to reduce the transmission
losses. Hollow-core waveguides have two possibilities. The inner
core materials have refractive indices greater than one (namely, leaky
waveguides) or the inner wall material has a refractive index of less than
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one. A hollow waveguide can be made, in principle, from any flexible
or rigid tube (plastic, glass, metal, etc.) if its inner hollow surface (the
core) is covered by a metallic layer and a dielectric overlayer. This layer
structure enables us to transmit both the TE and TM polarization with
low attenuation [4, 5].

Light propagation in a cylindrical waveguide has been pro-
posed [6]. The propagation of guided optical waves in circular waveg-
uides made of concentric layers of glass, aluminium, and vacuum were
investigated. In this work, attenuation is associated with the imagi-
nary part of the dielectric constant of aluminum. To understand light
propagation in circular dielectric waveguides with finite metal cladding,
three different waveguide structures have been discussed.

In the advance finite dimensional algebraic function approxima-
tion technique in eigenvalue problems of lossless metallic guides filled
with anisotropic and inhomogeneous media, to exact analysis in infi-
nite dimensions, properties of the linear operator in infinite dimensions
corresponding to Maxwell’s equations have been investigated [7].

The method of algebraic function approximation in eigenvalue
problems of closed lossless waveguides has been illustrated by means of
two examples [8]. Numerical computation results have been presented
for two physical problems. First, a closed uniform cylindrical guide
loaded with a concentric ferrite tube was investigated. Next, a closed
uniform cylindrical guide loaded with a coaxial cylindrical isotropic
dielectric rod was taken up.

A general method has been proposed to frequency domain analysis
of longitudinally inhomogeneous waveguides [9]. In this method, the
electric permittivity and also the transverse electric and magnetic
fields were expanded in a Taylor’s series. The field solutions were
obtained after finding unknown coefficients of the series. The unknown
coefficients of the series were obtained from some recursive relations.
A general method has been proposed to analyze aperiodic or periodic
longitudinally inhomogeneous waveguides [10]. In this method, the
electric permittivity function was expanded in the Fourier series. First,
the periodic longitudinally inhomogeneous waveguides were analyzed
using the Fourier series expansion of the electric permittivity function
to find their propagation constant and characteristic impedances.

A numerical technique has been proposed for the analysis of
various hollow conducting waveguides [11]. The method is based on
mathematically modelling of physical response of a system to excitation
over a range of frequencies. This is a mathematical model of the
physical measurements when the resonant frequencies of a system
were determined by the amplitude of response to some excitation.
The response amplitudes were then used to determine the resonant
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frequencies.
The main objectives of this paper are to present the technique

to calculate the dielectric profiles and their transverse derivatives in
the inhomogeneous cross section of the straight hollow waveguide,
and to understand the influence of the spot-size and cross section
on the output fields and output power density. The derivation is
based on Maxwell’s equations. The longitudinal components of the
fields are developed into the Fourier-Bessel series. The transverse
components of the fields are expressed as functions of the longitudinal
components in the Laplace plane and are obtained by using the
inverse Laplace transform by the residue method. The separation
of variables is obtained by using the orthogonal-relations. These
objectives contribute to the application of the model for the straight
hollow waveguide. The results of this model are applied to the study
of cylindrical hollow waveguides that are suitable for transmitting
infrared radiation, especially CO2 laser radiation. In this paper we
assume that the modes excited at the input of the waveguide by the
conventional CO2 laser infrared (IR) radiation (λ = 10.6µm) are closer
to the TEM polarization of the laser radiation. The TEM 00 mode is
the fundamental and the most important mode. This means that a
cross-section of the beam has a Gaussian intensity distribution.

2. THE DERIVATION

The wave equations for the electric and magnetic field components
in the inhomogeneous dielectric medium ε(r) are given for a lossy
dielectric media in metallic boundaries of the waveguide. The cross-
section of the straight hollow waveguide is shown in Fig. 1 for the
application of the hollow waveguide, in the region 0 ≤ r ≤ a + δm,
where δm is the thickness of the metallic layer, and d is the thickness
of the dielectric layer.

The following derivation is given for the lossless case to simplify
the mathematical expressions. In a linear lossy medium, the solution

Figure 1. A cross-section of the straight hollow waveguide (r, θ).
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is obtained by replacing the permittivity ε by εc = ε − j(σ/ω) in
the solutions for the lossless case, where εc is the complex dielectric
constant, and σ is the conductivity of the medium. The boundary
conditions for a lossy medium are given after the derivation. For most
materials, the permeability µ is equal to that of free space (µ = µ0).
The wave equations for the electric and magnetic field components in
the inhomogeneous dielectric medium ε(r) are given by

∇2E + ω2µεE +∇
(
E · ∇ε

ε

)
= 0, (1a)

and
∇2H + ω2µεH +

∇ε

ε
× (∇×H) = 0, (1b)

respectively. The transverse dielectric profile is defined as ε(r) = ε0[1+
g(r)], where ε0 represents the vacuum dielectric constant, and g(r) is its
profile function in the waveguide. The normalized transverse derivative
of the dielectric profile is defined as gr(r) = [1/ε(r)][∂ε(r)/∂r].

The z component of the exact Laplacian is given by
(∇2E

)
z

= ∇2Ez =
∂2

∂r2
Ez +

1
r2

∂2

∂θ2
Ez +

1
r

∂

∂r
Ez +

∂2

∂z2
Ez. (2)

The longitudinal components of the wave Eqs. (1a) and (1b) are
taken into account, where[

∇
(
E · ∇ε

ε

)]

z

=
∂

∂z

[
Ergr

]
, (3)

and [
∇ε

ε
× (∇×H)

]

z

= jωε

[
∇ε

ε
×E

]

z

= jωεgrEθ. (4)

The longitudinal components of the wave Eqs. (1a) and (1b) are written
in the form (

∇2E

)

z

+ k2Ez +
∂

∂z

(
Ergr

)
= 0, (5)

(
∇2H

)

z

+ k2Hz + jωεgrEθ = 0, (6)

where (∇2E)z, for instance, is given according to (2). The local wave
number parameter is k = ω

√
µε(r) = k0

√
1 + g(r), where the free-

space wave number is k0 = ω
√

µ0ε0. The transverse Laplacian operator
is defined as ∇2

⊥ ≡ ∇2 − ∂2/∂z2.
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The Laplace transform

ã(s) = L{a(z)} =
∫ ∞

z=0
a(z)e−szdz (7)

is applied on the z-dimension, where a(z) represents any z-dependent
variables.

The longitudinal components of the fields are developed into
Fourier-Bessel series, in order to satisfy the metallic boundary
conditions of a circular cross-section. Suppose that we have only ideal
boundary conditions for r = a. Thus, the electric and magnetic fields
will be zero in the metal, Ez(r = a) = 0 and [∂/∂r]Hz|r=a = 0. In
addition, the Laplace transform will be zero in r = a. The longitudinal
components of the fields (Ez, Hz) are developed into Fourier-Bessel
series [12], as follows:

Ẽz(s)=
∑

n′

∑

m′

[
An′m′(s) cos(n′θ)+Bn′m′(s) sin(n′θ)

]
Jn′

(
Pn′m′

r

a

)
, (8a)

H̃z(s)=
∑

n′

∑

m′

[
Cn′m′(s) cos(n′θ)+Dn′m′(s) sin(n′θ)

]
Jn′

(
P ′

n′m′
r

a

)
,(8b)

where Pnm and P ′
nm are the mth roots of the equations Jn(x) = 0 and

dJn(x)/dx = 0, respectively.
By substituting Eq. (2) into Eq. (5) and by using the Laplace

transform (7), the longitudinal components of the wave equations
(Eqs. (5)–(6)) are described in the Laplace transform domain, as
coupled wave equations, as follows:

(∇2
⊥ + s2 + k2

)
Ẽz + sgrẼr = grEr0 + sEz0 + E′

z0
, (9a)(∇2

⊥ + s2 + k2
)
H̃z + jωεgrẼθ = sHz0 + H ′

z0
, (9b)

where Ez0, Hz0, Er0 , Eθ0 , Hr0 , Hθ0 are the values of the corresponding
fields at z = 0, i.e., Ez0 = Ez(r, θ, z = 0) and E′

z0
=

(∂/∂z)Ez(r, θ, z)|z=0.
The transverse fields are obtained directly from the Maxwell

equations, and by using the Laplace transform (7). The transverse
fields of the straight hollow waveguide are dependent only on the
longitudinal components of the fields, as follows:

Ẽr(s) =
1

s2 + k2

{
− jωµ0

r

∂

∂θ
H̃z+s

∂

∂r
Ẽz+sEr0−jωµ0Hθ0

}
, (10a)

Ẽθ(s) =
1

s2 + k2

{
s

r

∂

∂θ
Ẽz+jωµ0

∂

∂r
H̃z+sEθ0 + jωµ0Hr0

}
, (10b)
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H̃r(s) =
1

s2 + k2

{
jωε

r

∂

∂θ
Ẽz + s

∂

∂r
H̃z + sHr0 + jωεEθ0

}
, (10c)

H̃θ(s) =
1

s2 + k2

{
s

r

∂

∂θ
H̃z − jωε

∂

∂r
Ẽz + sHθ0 − jωεEr0

}
, (10d)

where z is the coordinate along the straight hollow waveguide.
The coupled wave Eqs. 9(a) and 9(b) become wave equations that

are dependent only on the longitudinal components of the fields, by
substituting the transverse fields (Eqs. 10(a)–10(d)) into the coupled
wave equations (Eqs. 9(a) and 9(b)).

Two sets of equations are obtained by substitution the longitudinal
components of the fields (Eqs. 8(a) and 8(b)) into the wave equations.
The first set of the equations is multiplied by cos(nθ)Jn(Pnmr/a),
and after that by sin(nθ)Jn(Pnmr/a), for n 6= 0. Similarly, the
second set of the equations is multiplied by cos(nθ)Jn(P ′

nmr/a), and
after that by sin(nθ)Jn(P ′

nmr/a), for n 6= 0. In order to find an
algebraic system of four equations with four unknowns, it is necessary
to integrate over the area (r, θ), where r = [0, a], and θ = [0, 2π],
by using the orthogonal-relations

∫ 2π
0 cos(nθ) cos(n′θ)dθ = πδnn′ ,∫ 2π

0 sin(nθ) sin(n′θ)dθ = πδnn′ , and
∫ 2π
0 sin(nθ) cos(n′θ)dθ = 0, where

δnn′ is the Kronecker delta which equals unity for n = n′, and zero
otherwise [13].

The propagation constants βnm and β′nm of the TM and TE
modes of the hollow waveguide [14] are given, respectively, by βnm =√

k2
o − (Pnm/a)2 and β′nm =

√
k2

o − (P ′
nm/a)2, where the transverse

Laplacian operator (∇2
⊥) is given by −(Pnm/a)2 and −(P ′

nm/a)2 for
the TM and TE modes of the hollow waveguide, respectively.

The separation of variables is obtained by using the preceding
orthogonal-relations. Thus the algebraic equations (n 6= 0) are given
by

αn
(1)An + βn

(1)Dn =
1
π

(
B̂C1

)
n

, (11a)

αn
(2)Bn + βn

(2)Cn =
1
π

(
B̂C2

)
n

, (11b)

βn
(3)Bn + αn

(3)Cn =
1
π

(
B̂C3

)
n

, (11c)

βn
(4)An + αn

(4)Dn =
1
π

(
B̂C4

)
n

. (11d)
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Further we assume n′ = n = 1. The elements (αn
(1), βn

(1), etc),
on the left side of (11a) for n = 1 are given by:

α1
(1)mm′

= π

(
s2 + β

2
1m′

)[(
s2 + k0

2

)
G

(1)mm′
00 + k0

2G
(1)mm′
01

]

+πk0
2

(
s2G

(1)mm′
01 + G

(1)mm′
02

)
+ πs2

(
G

(1)mm′
03

)
, (12a)

β1
(1)mm′

=−jωµ0πs

(
G

(1)mm′
04

)
, (12b)

where the elements of the matrices (G(1)mm′
00 , etc.) are given in

Appendix A. Similarly, the other elements on the left side in
Eqs. (11b)–(11d) are obtained. We establish an algebraic system of four
equations with four unknowns. All the elements of the matrices in the
Laplace transform domain are dependent on the Bessel-equations, the
dielectric profile g(r), the transverse derivative gr(r), the parameters
of the cross-section (r, θ), and the propagation constants βnm and β′nm
of the TM and TE modes of the hollow waveguide, respectively.

The elements of the boundary conditions’ vectors on the right side
in Eqs. (11a)–(11d) are changed at the entrance of the straight hollow
waveguide, as follows:

(
B̂C1

)
1

=
∫ 2π

0

∫ a

0
(BC1) cos(θ)J1(P1mr/a)rdrdθ, (13a)

(
B̂C2

)
1

=
∫ 2π

0

∫ a

0
(BC2) sin(θ)J1(P1mr/a)rdrdθ, (13b)

(
B̂C3

)
1

=
∫ 2π

0

∫ a

0
(BC3) cos(θ)J1(P ′

1mr/a)rdrdθ, (13c)

(
B̂C4

)
1

=
∫ 2π

0

∫ a

0
(BC4) sin(θ)J1(P ′

1mr/a)rdrdθ. (13d)

In the case of the TEM 00 mode in excitation for the straight
hollow waveguide, the elements of the boundary conditions’ vectors
(Eqs. (13a)–(13d)) are obtained, where:

BC1 = BC2 = jωµ0H
+
θ0

sgr + k2E+
r0

gr, (14a)

BC3 = BC4 = −jωεE+
θ0

sgr + k2H+
r0

gr. (14b)

The elements of the boundary conditions (e.g., (B̂C2)1) at z = 0+
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according to Eq. (13b) is given where

(BC2) =

[(
s2 + k2

)(
sEz0 + E′

z0

)]
+ jωµ0Hθ0sgr + k2Er0gr.

The boundary conditions at z = 0+ for TEM 00 mode in excitation
become to:

(
B̂C2

)
1

= 2π

{∫ a

0
Q(r)(k(r) + js)k(r)J1m(P1mr/a)rdr

}
δ1n (15)

where
Q(r) =

E0

nc(r) + 1
gr exp (−(r/wo)

2).

Similarly, the remaining elements of the boundary conditions at z = 0+

are obtained. The matrix system of the Eqs. (11a)–(11d) is solved to
obtain the coefficients (A1, B1, etc.).

According to the Gaussian beams [15] the parameter w0 is the
minimum spot-size at the plane z = 0 (see Fig. 2), and the electric
field at the plane z = 0 is given by E = E0 exp[−(r/wo)

2]. The modes
excited at z = 0 in the waveguide by the conventional CO2 laser IR
radiation (λ = 10.6µm) are closer to the TEM polarization of the
laser radiation. The TEM 00 mode is the fundamental and the most
important mode. This means that a cross-section of the beam has a
Gaussian intensity distribution. The relation between the electric and
magnetic fields [15] is given by E/H =

√
µ0/ε0 ≡ η0, where η0 is the

intrinsic wave impedance. Suppose that the electric field is parallel
to the y-axis. Thus the components of Ey and Hx are written by the
fields Ey = E0 exp[−(r/wo)

2] and Hx = −(E0/η0) exp[−(r/wo)
2].

After a Gaussian beam passes through a lens and before it enters
to the waveguide, the waist cross-sectional diameter (2w0) can then
be calculated approximately for a parallel incident beam by means
of w0 = λ/(πθ) ' (fλ)/(πw). This approximation is justified if the
parameter w0 is much larger than the wavelength λ. The asymptotic
angle of the beam is a function of the laser beam cross-sectional

Figure 2. Propagating Gaussian beam.
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diameter (2w) at the lens plane, and a function of the focal length
of the lens f . The parameter of the waist cross-sectional diameter
(2w0) is taken into account in our method, instead of the focal length
of the lens (f). The initial fields at z = 0+ are formulated by using
the Fresnel coefficients of the transmitted fields [16], as follows

E+
r0

(r, θ, z = 0+) = TE(r)(E0e
−(r/wo)2 sin θ), (16a)

E+
θ0

(r, θ, z = 0+) = TE(r)
(
E0e

−(r/wo)2 cos θ
)

, (16b)

H+
r0

(r, θ, z = 0+) = −TH(r)
(
(E0/η0)e−(r/wo)2 cos θ

)
, (16c)

H+
θ0

(
r, θ, z = 0+

)
= TH(r)

(
(E0/η0)e−(r/wo)2 sin θ

)
, (16d)

where E+
z0

= H+
z0

= 0, TE(r) = 2/[(n(r)+1], TH(r) = 2n(r)/[(n(r)+1],
and n(r) = [εr(r)]1/2. The index of refraction is denoted by n(r).

The output transverse components of the fields of the straight
hollow waveguide are finally expressed in a form of transfer matrix
functions, as follows:

Er(r, θ, z) = E+
r0e

−jkz +
jωµ0

r
sin θ

∑

m′
Cm′

S1 (z)J1(ψ)

−jωµ0

r
cos θ

∑

m′
Dm′

S1(z)J1(ψ) + cos θ
∑

m′
Am′

S2(z)
dJ1

dr
(ξ)

+ sin θ
∑

m′
Bm′

S2 (z)
dJ1

dr
(ξ), (17a)

Eθ(r, θ, z) = E+
θ0e

−jkz + jωµ0 cos θ
∑

m′
Cm′

S1 (z)
dJ1

dr
(ψ)

+jωµ0 sin θ
∑

m′
Dm′

S1(z)
dJ1

dr
(ψ)− 1

r
sin θ

∑

m′
Am′

S2(z)J1(ξ)

+
1
r

cos θ
∑

m′
Bm′

S2 (z)J1(ξ), (17b)

Hr(r, θ, z) = H+
r0e

−jkz − jωε

r
sin θ

∑

m′
Am′

S1(z)J1(ξ)

+
jωε

r
cos θ

∑

m′
Bm′

S1 (z)J1(ξ) + cos θ
∑

m′
Cm′

S2 (z)
dJ1

dr
(ψ)

+ cos θ
∑

m′
Cm′

S2 (z)
dJ1

dr
(ψ)+sin θ

∑

m′
Dm′

S2(z)
dJ1

dr
(ψ), (17c)
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Hθ(r, θ, z) = H+
θ0e

−jkz − jωε cos θ
∑

m′
Am′

S1(z)
dJ1

dr
(ξ)

−jωε sin θ
∑

m′
Bm′

S1 (z)
dJ1

dr
(ξ)− 1

r
sin θ

∑

m′
Cm′

S2 (z)J1(ψ)

+
1
r

cos θ
∑

m′
Dm′

S2(z)J1(ψ), (17d)

where ψ = [P ′
1m′(r/a)] and ξ = [P1m′(r/a)]. The coefficients are given

in the above equation, for instance

Am′
S1(z) = L−1

{
A1m′(s)

s2 + k2(r)

}
, (18a)

Am′
S2(z) = L−1

{
sA1m′(s)
s2 + k2(r)

}
, (18b)

where
m′ = 1, . . . , N, 3 ≤ N ≤ 20. (18c)

The roots (zeros) of the equations J1(x) = 0 and dJ1(x)/dx = 0
are given by the ready tables [17, 18].

The inverse Laplace transform is performed in this study by a
direct numerical integration in the Laplace transform domain by the
residue method, as follows

f(z)=L−1
[
f̃(s)

]
=

1
2πj

∫ σ+j∞

σ−j∞
f̃(s)eszds =

∑
n

Res
[
esz f̃(s);Sn

]
. (19)

By using the inverse Laplace transform (19), we can compute the
output transverse components in the real plane and the output power
density at each point at z. The integration path in the right side of
the Laplace transform domain includes all the singularities according
to Eq. (19). All the points Sn are the poles of f̃(s) and Res[esz f̃(s);Sn]
represent the residue of the function in a specific pole. According to the
residue method, two dominant poles for the straight hollow waveguide
are given by s = ±j k(r). All the transverse components are known,
and the z component of the average-power density Poynting vector is
given by

Sav =
1
2
Re

{
ErHθ

∗ −EθHr
∗
}

, (20)

where the asterisk indicates the complex conjugate. The total average-
power transmitted along the guide in the z direction can now be
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obtained by the integral of Eq. (20) over the waveguide cross section.
Thus, the output power transmission is given by

T =
1
2

∫ 2π

0

∫ a

0
Re

{
ErHθ

∗ − EθHr
∗
}

rdrdθ. (21)

In a linear lossy medium, the solution is obtained by replacing
the permittivity ε by εc = ε − j(σ/ω) in the preceding mathematical
expressions, where εc is the complex dielectric constant and σ is the
conductivity of the medium. The coefficients are obtained directly
from the algebraic Eqs. (11a)–(11d) and are expressed as functions
in the Laplace transform domain. To satisfy the metallic boundary
conditions of a circular cross-section we find the new roots P

(new)
1m and

P
′(new)
1m of the equations J1(z) = 0 and dJ1(z)/dz = 0, respectively,

where z is complex. The coefficients according to our method are
expressed as functions in the Laplace transform domain. Thus, from
the requirement that the coefficients vanish, the new roots P

(new)
1m and

P
′(new)
1m are calculated by developing into the Taylor series, in the first

order at 1/σ. Similarly, the roots P
′(new)
1m are obtained. The new

roots in the case of a lossy medium are complex. The complex Bessel
functions are computed by using NAG subroutine [19].

It is very interesting to compare between the mode model method
for wave propagation in the straight waveguide with a rectangular
cross section [20] and this proposed model for the wave propagation
in the straight waveguide with a circular cross section. These the two
kinds of the different methods enable us to solve practical problems
with different boundary conditions. Let us introduce the similar main
points. The calculations in all method are based on using Laplace
and Fourier transforms, and the output fields are computed by the
inverse Laplace and Fourier transforms. Laplace transform on the
differential wave equations is needed to obtain the wave equations (and
thus also the output fields) that are expressed directly as functions of
the transmitted fields at the entrance of the waveguide at z = 0+.
Thus, the Laplace transform is necessary to obtain the comfortable
and simple input-output connections of the fields.

Several examples computed on a Unix system are presented in
the next section, in order to demonstrate the results of this proposed
method for practical cases with inhomogeneous cross-section in the
cylindrical hollow waveguide.
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3. NUMERICAL RESULTS

Several examples that demonstrate features of the proposed mode
model derived in the previous section. The cross-section of the straight
hollow waveguide (Fig. 1) is made of a tube of various types of
material, a metallic layer, and a dielectric layer upon it. The next
examples represent the case of the hollow waveguide with a metallic
layer (Ag) coated by a thin dielectric layer (AgI). For silver having a
conductivity of 6.14 ×107(ohm ·m)−1 and the skin depth at 10.6µm
is 1.207× 10−8 m.

We suppose that the transmitted fields of the initial fields (TEM 00

mode in excitation) are formulated by using the Fresnel coefficients
[Eqs. (16a)–(16d)]. The output modal profile is greatly affected by the
parameters of the spot size and the dimensions of the cross section of
the waveguide. The geometrical shape of the dielectric profile in the
cross section of the cylindrical waveguide is demonstrated in Fig. 1 for
an inhomogeneous dielectric profile in the cross section.

In order to solve discontinuous problems in the cross section, the
ωε function, “cap-shaped function” [21], is used. The ωε function
(Fig. 3(a)) is defined as

ωε(r) =





Cε exp

[
− ε2

ε2−|r|2

]
|r| ≤ ε

0 |r| > ε

,

where the constant Cε is chosen to satisfy
∫

ωε(r)dr = 1.
The ωε function in the limit ε −→ 0 is shown in Fig. 3(b). The

refractive indices of the air, dielectric and metallic layers are: n(0) = 1,
n(AgI) = 2, and n(Ag) = 10 − j60, respectively. The value of the

(a) (b)

Figure 3. (a) The ωε function; (b) The ωε function in the limit
ε −→ 0.
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refractive index of the material at a wavelength of λ = 10.6µm is taken
from the table performed by Miyagi et al. [22]. The real and imaginary
parts of the refractive indices of the air, dielectric layer (AgI) and
metallic layer (Ag) are shown in Fig. 4. Note that the refractive index
(n(r)) and the transverse derivative of the dielectric profile (gr(r)) are
dependent also on the transition’s regions in the cross section between
the two different materials (air-AgI, AgI-Ag).

The refractive index is calculated as follows

n(r)=





n0 0 ≤ r < b− ε1/2

n0+(nd−n0) exp

[
1− ε1

2

ε1
2−[r−(b+ε1/2)]2

]
b−ε1/2≤r<b+ε1/2

nd b+ε1/2≤r<a−ε2/2

nd+(nm−nd) exp

[
1− ε2

2

ε2
2−[r−(a+ε2/2)]2

]
a−ε2/2≤r<a+ε2/2

nm else

,

where the internal and external diameters are denoted as 2b, 2a, and
2(a + δm) respectively, where δm is the metallic layer. The thickness
of the dielectric layer (d) is defined as [a− b], and the thickness of the
metallic layer (δm) is defined as [(a + δm)− a]. The parameters ε1 and
ε2 are very small [e.g., ε1 = [a − b]/50, ε2 = [(a + δm) − a]/50]. The
refractive indices of the air, dielectric and metallic layers are denoted as
n0, nd, and nm, respectively. The transverse derivative of the dielectric

Figure 4. The real and imaginary parts of the refractive indices of
the air, dielectric layer (AgI) and metallic layer (Ag).
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profile is calculated as follows

gr(r) =





0 0 ≤ r < b− ε1/2

−4(nd−n0) exp

[
1− ε1

2

ε1
2−[r−(b+ε1/2)]2

][
r−(b+ε1/2)

]
ε1

2

n0+(nd−n0) exp

[
1− ε1

2

ε1
2−[r−(b+ε1/2)]2

][
ε1

2−[r−(b+ε1/2)]2

]2

b− ε1/2 ≤ r < b + ε1/2
0 b + ε1/2 ≤ r < a− ε2/2

−4(nm−nd) exp

[
1− ε2

2

ε2
2−[r−(a+ε2/2)]2

][
r−(a+ε2/2)

]
ε2

2

nd+(nm−nd) exp

[
1− ε2

2

ε2
2−[r−(a+ε2/2)]2

][
ε2

2−[r−(a+ε2/2)]2

]2

a− ε2/2 ≤ r < a + ε2/2
0 else

.

Figure 4 shows the real and imaginary parts of the refractive
indices of the air, dielectric layer (AgI) and metallic layer (Ag), for
the cross-section of the straight hollow waveguide, as shown in Fig. 1.

In algebraic Eqs. (11a)–(11d), we assumed n′ = n = 1. The
convergence of the numerical results were obtained for n′ = n = 1,
where m′ = 1, . . . , N , and where N = 20.

The results of the output transverse components of the fields and
the output power density (|Sav|) (e.g., Fig. 5(a)) show the behavior
of the solutions for the TEM 00 mode in excitation. The result of the
output power density (Sav) of this example (Fig. 5(a)) is compared to
the result of the published experimental data [23], as shown also in

(a) (b)

Figure 5. The output power density (a = 1 mm, d(AgI) = 0.75µm,
λ = 10.6µm, w0 = 0.3mm, n(0) = 1, n(AgI) = 2.2, n(Ag) = 13.5−j75.3,
and the length of the straight waveguide is 1 m) (a) theoretical result;
(b) Experimental result.
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Fig. 5(b). This comparison has shown good agreement (a Gaussian
shape) as expected, except for the secondary small propagation mode.
In this example, the length of the straight waveguide is 1 m, the
diameter (2a) of the waveguide is 2 mm, the thickness of the dielectric
layer [d(AgI)] is 0.75µm, and the minimum spot-size (w0) is 0.3 mm.
The refractive indices of the air, dielectric layer (AgI) and metallic layer
(Ag) are n(0) = 1, n(AgI) = 2.2, and n(Ag) = 13.5− j75.3, respectively.
The value of the refractive index of the material at a wavelength of
λ = 10.6µm is taken from the table performed by Miyagi, et al. [22].
This experimental result was obtained from the measurements of the

(a) (b)

(c) (d)

(e)

Figure 6. The results of the output transverse components of the
field where w0 = 0.1mm, and a = 1 mm (a) Er component; (b) Eθ

component; (c) Hr component; (d) Hθ component; (e) The result of
the output power density, where z = 1m, nd = 2.2, and n(Ag) =
13.5− j75.3.
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transmitted CO2 laser radiation (λ = 10.6µm) propagation through
a hollow tube covered on the bore wall with silver and silver-iodide
layers (Fig. 1). The experimental result (Fig. 5(b)) is affected by the
additional parameters (e.g., the roughness of the internal wall of the
waveguide) which are not taken theoretically into account.

The two important parameters that we studied were the spot
size and the dimensions of the cross section of the straight hollow
waveguide. The results are affected by the spot size and the dimensions
of the cross section of the waveguide. The waveguide’s cross-section
consists of the metallic and dielectric coating (Fig. 1). The results of
the output transverse components of the field are shown in Figs. 6(a)–

(a) (b)

(c) (d)

(e)

Figure 7. The results of the output transverse components of the
field where w0 = 0.1mm, and a = 0.5mm (a) Er component;
(b) Eθ component; (c) Hr component; (d) Hθ component; (e) The
result of the output power density, where z = 1 m, nd = 2.2, and
n(Ag) = 13.5− j75.3.
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6(d), and the result of the output power density is shown in Fig. 6(e),
where w0 = 0.1mm, a = 1 mm, z = 1 m, n(0) = 1, n(AgI) = 2.2, and
n(Ag) = 13.5− j75.3.

By changing only the parameter a = 1mm to a = 0.5mm,
where the other parameters are not changed, the results of the output
transverse components are demonstrated in Figs. 7(a)–7(d) and the
output power density is demonstrated in Fig. 7(e). By changing
only the parameter w0 = 0.1mm to w0 = 0.25mm, where the other
parameters are not changed, the results of the output transverse
components are shown in Figs. 8(a)–8(d), and the output power density
is shown in Fig. 8(e). In addition to the main propagation mode,

(a) (b)

(c) (d)

(e)

Figure 8. The results of the output transverse components of the
field where w0 = 0.25mm, and a = 0.5mm (a) Er component;
(b) Eθ component; (c) Hr component; (d) Hθ component ; (e) The
result of the output power density, where z = 1 m, nd = 2.2, and
n(Ag) = 13.5− j75.3.
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several other secondary modes and symmetric output shape appear in
Figs. 8(a)–8(e) for a = 0.5 mm and w0 = 0.25mm.

Figures 9(a)–9(c) show the results of the output power density
where a = 0.5mm in three cases of the spot size w0 = 0.15mm,
w0 = 0.2mm, and w0 = 0.25mm, respectively. The other parametrs
are z = 1 m, nd = 2.2, and n(Ag) = 13.5 − j75.3. Fig. 9(d) shows
the result of the output power density of the central peak in the same
cross section of the three cases, where y = b/2, for w0 = 0.15mm,
w0 = 0.2mm, and w0 = 0.25mm, respectively.

By changing only the three values of the spot size from w0 =
0.15mm, w0 = 0.2mm, and w0 = 0.25mm, to w0 = 0.26mm,
w0 = 0.28mm, and w0 = 0.3 mm, respectively, the results of the output
power density for a = 0.5mm are demonstrated in Figs. 10(a)–10(c).
Fig. 10(d) shows the result of the output power density of the central
peak in the same cross section of the three cases, where y = b/2,
for w0 = 0.26mm, w0 = 0.28mm, and w0 = 0.3mm, respectively.
The output modal profile is greatly affected by the parameters of the

(a) (b)

(c) (d)
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Figure 9. The output power density where a = 0.5 mm in three cases:
(a) w0 = 0.15mm; (b) w0 = 0.2mm; (c) w0 = 0.25 mm. The other
parametrs are z = 1 m, nd = 2.2, and n(Ag) = 13.5 − j75.3; (d) The
output power density of the central peak in the same cross section of
the three cases (a)–(c), where y = b/2, for w0 = 0.15 mm, w0 = 0.2mm,
and w0 = 0.25 mm, respectively.
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(a) (b)

(c)
(d)

|S   | [W/m  ]2
av

Figure 10. The output power density where a = 0.5 mm in three
cases: (a) w0 = 0.26mm; (b) w0 = 0.28 mm; (c) w0 = 0.3 mm. The
other parametrs are z = 1 m, nd = 2.2, and n(Ag) = 13.5 − j75.3;
(d) The output power density of the central peak in the same cross
section of the three cases (a)–(c), where y = b/2, for w0 = 0.26mm,
w0 = 0.28mm, and w0 = 0.3mm, respectively.

spot size and the dimensions of the cross section of the waveguide.
Figs. 10(a)–10(c) demonstrate that in addition to the main propagation
mode, several other secondary modes and symmetric output shape
appear in the results of the output power density for the three values
of w0 = 0.26mm, w0 = 0.28mm, and w0 = 0.3mm, respectively.

4. CONCLUSIONS

This paper presents a rigorous approach for the propagation of EM
fields along a cylindrical hollow waveguide. The main objective was
to develop a numerical method for the calculation of the output fields
and power density in the case of the straight and the hollow waveguide.
The other objectives were to present the technique to calculate the
dielectric profiles and their transverse derivatives in the inhomogeneous
cross section of the straight hollow waveguide, and to understand the
influence of the spot-size and cross section on the output fields and
output power density. The derivation is based on Maxwell’s equations.
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The longitudinal components of the fields were developed into the
Fourier-Bessel series. The transverse components of the fields were
expressed as functions of the longitudinal components in the Laplace
plane and were obtained by using the inverse Laplace transform by the
residue method. The separation of variables was obtained by using the
orthogonal-relations. These objectives contribute to the application of
the model for the straight hollow waveguide.

The results of the output transverse components of the fields
and the output power density (|Sav|) (e.g., Fig. 5(a)) show the
behavior of the solutions for the TEM 00 mode in excitation. The
comparison between the theoretical mode-model (Fig. 5(a)) and the
experimental data (Fig. 5(b)) has shown good agreement (a Gaussian
shape) as expected, except for the secondary small propagation mode.
This experimental result was obtained from the measurements of the
transmitted CO2 laser radiation (λ = 10.6µm) propagation through
a hollow tube covered on the bore wall with silver and silver-iodide
layers (Fig. 1). The experimental result (Fig. 5(b)) is affected by the
additional parameters (e.g., the roughness of the internal wall of the
waveguide) which are not taken theoretically into account.

By changing only the parameter a = 1mm to a = 0.5mm,
where the other parameters are not changed, the results of the output
transverse components are demonstrated in Figs. 7(a)–7(d) and the
output power density is demonstrated in Fig. 7(e). By changing
only the parameter w0 = 0.1mm to w0 = 0.25mm, where the other
parameters are not changed, the results of the output transverse
components are shown in Figs. 8(a)–8(d), and the output power density
is shown in Fig. 8(e).

By changing only the three values of the spot size to w0 =
0.26mm, w0 = 0.28mm, and w0 = 0.3mm, respectively, the results of
the output power density of the field for a = 0.5 mm are demonstrated
in Figs. 10(a)–10(c). Fig. 10(d) shows the result of the output power
density of the central peak in the same cross section of the three cases,
where y = b/2, for w0 = 0.26 mm, w0 = 0.28mm, and w0 = 0.3mm,
respectively.

The two important parameters that we studied were the spot
size and the dimensions of the cross section of the straight hollow
waveguide. The output results are affected by the parameters of the
spot size and the dimensions of the cross section of the waveguide. In
addition to the main propagation mode, several other secondary modes
and symmetric output shape appear in Figs. 8(a)–8(d) for a = 0.5mm
and w0 = 0.25mm. Figs. 10(a)–10(c) demonstrate that in addition
to the main propagation mode, several other secondary modes and
symmetric output shape appear in the results of the output power
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density for the three values of w0 = 0.26mm, w0 = 0.28mm, and
w0 = 0.3mm, respectively.

APPENDIX A.

The elements of the matrices (G(1)mm′
00 , etc.) are given by:

G
(1)mm′
00 =

∫ a

0
J1

(
P1m′

r

a

)
J1

(
P1m

r

a

)
rdrδ1n,

G
(1)mm′
01 =

∫ a

0
g(r)J1

(
P1m′

r

a

)
J1

(
P1m

r

a

)
rdrδ1n,

G
(1)mm′
02 =

∫ a

0
k2g(r)J1

(
P1m′

r

a

)
J1

(
P1m

r

a

)
rdrδ1n,

G
(1)mm′
03 =

∫ a

0
gr

(
P1m′

a

)
J1
′
(

P1m′
r

a

)
J1

(
P1m

r

a

)
rdr,

G
(1)mm′
04 =

∫ a

0
grJ1

′
(

p′1m′r

a

)
J1

(
P1m

r

a

)
drδ1n.

Similarly, the remaining elements are obtained. The coefficients are
obtained directly from the algebraic system of Eqs. (11a)–(11d) and
are expressed as functions in s-plane.
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