Vol. 134
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-12-07
Split-Field Finite-Difference Time-Domain Scheme for Kerr-Type Nonlinear Periodic Media
By
Progress In Electromagnetics Research, Vol. 134, 559-579, 2013
Abstract
The Split-Field Finite-Difference Time-Domain (SFFDTD) formulation is extended to periodic structures with Kerr-type nonlinearity. The optical Kerr effect is introduced by an iterative fixed-point procedure for solving the nonlinear system of equations. Using the method, formation of solitons inside homogenous nonlinear media is numerically observed. Furthermore, the performance of the approach with more complex photonic systems, such as high-reflectance coatings and binary phase gratings with high nonlinearity is investigated. The static and the dynamic behavior of the Kerr effect is studied and compared to previous works.
Citation
Jorge Frances Monllor, Jani Tervo, and Cristian Neipp, "Split-Field Finite-Difference Time-Domain Scheme for Kerr-Type Nonlinear Periodic Media," Progress In Electromagnetics Research, Vol. 134, 559-579, 2013.
doi:10.2528/PIER12101514
References

1. Kerr, J., "A new relation between electricity and light: Dielectri-fied media birefringent," Phil. Mag. J. Sci., Vol. 50, No. 3, 337-393, 1875.

2. Boyd, R. W., Nonlinear Optics, 2nd Edition, Academic Press, 2003.

3. Aberg, I., "High-frequency switching and Kerr effect - Nonlinear problems solved with nonstationary time domain techniques Summary," Journal of Electromagnetic Waves and Applications, Vol. 12, No. 1, 85-90, 1998.
doi:10.1163/156939398X00061

4. Joseph, R. M. and A. Taflove, "FDTD Maxwell's equations models for nonlinear electrodynamics and optics," IEEE Trans. Antennas Propag., Vol. 45, No. 3, 364-374, 1997.
doi:10.1109/8.558652

5. Kosmidou, E. P. and T. D. Tsiboukis, "An unconditionally stable ADI-FDTD algorithm for nonlinear materials," Proc. ISTET, 2003.

6. Fujii, M., M. Tahara, I. Sakagami, W. Freude, and P. Russer, "High-order FDTD and auxiliary differential equation formulation of optical pulse propagation ," IEEE J. Quantum Electron., Vol. 40, No. 2, 175-182, 2004.
doi:10.1109/JQE.2003.821881

7. Balourdos, P. S., D. J. Frantzeskakis, M. C. Tsilis, and I. G. Tigelis, "Reflectivity of a nonlinear discontinuity in optical waveguides," Journal of Optics A: Pure and Applied Optics, Vol. 7, No. 1, 1-11, 1998.

8. Deering, W. D. and G. M. Molina, "Power switching in hybrid coherent couplers," IEEE J. Quantum Electron., Vol. 33, No. 3, 336-340, 1998.
doi:10.1109/3.556001

9. Zhou, F., Y. Liu, Z.-Y. Li, and Y. Xia, "Analytical model for optical bistability in nonlinear metal nano-antennae involving Kerr materials," Opt. Express, Vol. 18, No. 15, 13337-13344, 2010.
doi:10.1364/OE.18.013337

10. Wang, S. M. and L. Gao, "Nonlinear responses of the periodic structure composed of single negative materials," Opt. Commun., Vol. 267, No. 1, 197-204, 2006.
doi:10.1016/j.optcom.2006.05.065

11. Wang, S. M., C. G. Tang, T. Pan, and L. Gao, "Bistability and gap soliton in one-dimensional photonic crystal containing single-negative materials," Phys. Lett. A, Vol. 348, No. 3-6, 424-431, 2006.
doi:10.1016/j.physleta.2005.08.037

12. Hedge, R. S. and H. G. Winful, "Optical bistability in periodic nonlinear structures containing left handled materials," Microw. Opt. Technol. Lett., Vol. 46, No. 36, 528-530, 2005.

13. Gao, D. and L. Gao, "Goos-Hänchen shift of the reflection from nonlinear nanocomposites with electric field tunability," Appl. Phys. Lett., Vol. 97, 041903, 2010.
doi:10.1063/1.3470000

14. Dong, L. Gao, and C.-W. Qiu, "Goos-Hänchen shift at the surface of chiral negative refractive media," Progress In Electromagnetic Research, Vol. 90, 255-268, 2009.
doi:10.2528/PIER08122002

15. Brzozowski, L. and E. H. Sargent, "Optical signal processing using nonlinear distributed feedback structures," IEEE J. Quantum Electron., Vol. 36, No. 5, 550-555, 2000.
doi:10.1109/3.842096

16. Qasymeh, M., M. Cada, and S. A. Ponomarenko, "Quadratic electro-optic Kerr effect: Applications to photonic devices," IEEE J. Quantum Electron., Vol. 44, No. 8, 740-746, 2008.
doi:10.1109/JQE.2008.924430

17. Wu, J.-W. and H.-B. Bao, "Simultaneous generation of ultrafast bright and dark pulse employing nonlinear processes based on the silicon waveguides," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 8-9, 1143-1154, 2009.

18. Li, Y. E. and X. P. Zhang, "Nonlinear optical switch utilizing long-range surface plasmon polaritons," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 17-18, 2363-2371, 2009.

19. Crutcher, S., A. Biswas, M. D. Aggarwal, and M. E. Edwards, "Oscillatory behavior of spatial solitons in two-dimensional waveguides and stationary temporal power law solitons in optical fibers," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 6, 761-772, 2006.
doi:10.1163/156939306776143361

20. Ghafoori-Fard, H., M. J. Moghimi, and A. Rostami, "Linear and nonlinear superimposed Bragg grating: A novel proposal for all-optical multi-wavelength filtering and switching," Progress In Electromagnetic Research, Vol. 77, 243-266, 2007.
doi:10.2528/PIER07072903

21. Morgan, S. A., R. J. Ballagh, and K. Burnett, "Solitary-wave solutions to nonlinear Schrödinger equations," Phys. Rev. A, Vol. 55, No. 6, 4338-4345, 1997.
doi:10.1103/PhysRevA.55.4338

22. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag., Vol. 14, No. 3, 302-307, 1966.

23. Taflove, A. and S. C. Hagness, "Computational Electrodynamics: The Finite-Difference Time-Domain Method," Artech House, Norwood, MA, 2004.

24. Lee, K. H., I. Ahmed, R. S. M. Goh, E. H. Khoo, E. P. Li, and T. G. G. Hung, "Implementation of the FDTD method based on Lorentz-Drude dispersive model on GPU for plasmonics applications," Progress In Electromagnetic Research, Vol. 116, 441-456, 2011.

25. Francés, J., C. Neipp, M. Pérez-Molina, and A. Beléndez, "Rigorous interference and diffraction analysis of diffractive optic elements using the finite-difference time-domain method," Comput. Phys. Commun., Vol. 181, No. 12, 1963-1973, 2010.
doi:10.1016/j.cpc.2010.09.005

26. Francés, J., C. Neipp, A. Márquez, A. Beléndez, and I. Pascual, "Analysis of reflection gratings by means of a matrix approach," Progress In Electromagnetic Research, Vol. 118, 167-183, 2011.
doi:10.2528/PIER11050403

27. Kalaee, P. and J. Rashed-Mohassel, "Investigation of dipole radiation pattern above a chiral media using 3D BI-FDTD approach," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 75-86, 2009.
doi:10.1163/156939309787604706

28. Kao, Y. C. and R. G. Atkins, "A finite-difference time-domain approach for frequency selective surfaces at oblique incidence," Proceedings of Antennas and Propagation Society International Symposium, 1432-1435, 1996.

29. Roden, J. A., S. D. Gedney, M. P. Kesler, J. G. Maloney, and P. H. Harms, "Time-domain analysis of periodic structures at oblique incidence: Orthogonal and nonorthogonal FDTD implementation," IEEE Trans. Microw. Theory Tech., Vol. 46, No. 4, 420-427, 1998.
doi:10.1109/22.664143

30. Veysoglu, M. E., R. T. Shin, and J. A. Kong, "A finite-difference time-domain analysis of wave scattering from periodic surfaces: Oblique incidence case," Journal of Electromagnetic Waves and Applications, Vol. 7, No. 12, 1595-1607, 1993.
doi:10.1163/156939393X00020

31. Mao, Y., B. Chen, H.-Q. Liu, J.-L. Xia, and J.-Z. Tang, "A hybrid implicit-explicit spectral FDTD scheme for oblique incidence problems on periodic structures," Progress In Electromagnetic Research, Vol. 128, 153-170, 2012.

32. Shahmansouri, A. and B. Rashidian, "Comprehensive three-dimensional split-field finite-difference time-domain method for analysis of periodic plasmonic nanostructures: Near- and far-field formulation," J. Opt. Soc. Am. B, Vol. 28, No. 11, 2690-2700, 2011.
doi:10.1364/JOSAB.28.002690

33. Shahmansouri, A. and B. Rashidian, "GPU implementation of split-field finite-difference time-domain method for Drude-Lorentz dispersive media," Progress In Electromagnetic Research, Vol. 125, 55-77, 2012.
doi:10.2528/PIER12010505

34. Goorjian, P. M., A. Taflove, R. M. Joseph, and S. C. Hagness, "Computational modeling of femtosecond optical solitons from Maxwell's equations," IEEE J. Quantum Electron., Vol. 28, No. 10, 2416-2422, 1992.
doi:10.1109/3.159548

35. Goorjian, P. M. and A. Taflove, "Direct time integration of Maxwell's equations in nonlinear dispersive media for propagation and scattering of femtosecond electromagnetic solitons," Opt. Lett., Vol. 17, No. 3, 180-182, 1992.
doi:10.1364/OL.17.000180

36. Zhang, Y.-Q. and D.-B. Ge, "A unified FDTD approach for electromagnetic analysis of dispersive objects," Progress In Electromagnetic Research, Vol. 96, 155-172, 2009.
doi:10.2528/PIER09072603

37. Gedney, S. D., "An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices," IEEE Trans. Antennas Propag., Vol. 44, No. 12, 1630-1639, 1996.
doi:10.1109/8.546249

38. Zheng, G., A. A. Kishk, A. W. Glisson, and A. B. Yakovlev, "Implementation of Mur's absorbing boundaries with periodic structures to speed up the design process using finite-difference time-domain method," Progress In Electromagnetic Research, Vol. 58, 101-114, 2006.
doi:10.2528/PIER05062103

39. Oh, C. and M. Escuti, "Time-domain analysis of periodic anisotropic media at oblique incidence: An efficient FDTD implementation," Opt. Express, Vol. 14, No. 24, 11870-11884, 2006.
doi:10.1364/OE.14.011870

40. Ammann, M., "Non-trivial materials in EM-FDTD," , Master's Thesis, Department of Physics, Swiss Federal Institute of Technology, 2007.
doi:10.1007/s11082-006-9020-1

41. Pinto, D., S. S. A. Obayya, B. M. A. Rahman, and K. T. V. Grattan, "FDTD analysis of nonlinear Bragg grating based optical devices," Opt. Quant. Electron., Vol. 38, No. 15, 1217-1238, 2006.

42. Macleod, H. A., Thin-Film Optical Filters, 2nd Edition, Taylor & Francis, 2001.
doi: --- Either ISSN or Journal title must be supplied.