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Abstract—The Split-Field Finite-Difference Time-Domain (SF-
FDTD) formulation is extended to periodic structures with Kerr-type
nonlinearity. The optical Kerr effect is introduced by an iterative fixed-
point procedure for solving the nonlinear system of equations. Using
the method, formation of solitons inside homogenous nonlinear media
is numerically observed. Furthermore, the performance of the approach
with more complex photonic systems, such as high-reflectance coatings
and binary phase gratings with high nonlinearity is investigated. The
static and the dynamic behavior of the Kerr effect is studied and
compared to previous works.

1. INTRODUCTION

The history of the nonlinear optics goes back as early as 1875 when
Kerr [1] demonstrated the birefringence phenomenon in optically
isotropic media under the effect of a DC biasing electric field. The
same phenomenon takes place also due to the incoming field itself,
in which case one speaks about the AC, or optical, Kerr effect [2, 3].
Mathematically, the Kerr effect can be described by the third-order
nonlinear susceptibility χ

(3)
0 , which is non-negligible in a wide variety
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of commonly used materials that can be integrated and used, e.g., in
microelectronics, fiber optics, or optical waveguides in general. Even
though the Kerr effect, being an intensity-dependent contribution to
the electric permittivity, looks simple at first sight, its overall effect is
actually quite complex. For example, different parts of an optical pulse
are unequally affected by the Kerr-effect. One of the consequences
of this is the optical soliton [2, 4–6], that arises from the balancing
between the dispersion and the Kerr effect. Other implications of the
effect include all-optical ultrafast applications, such as waveguides that
combine linear media with nonlinear media [7] or all-optical switching
devices utilizing nonlinear material [8]. In certain circumstances,
periodic assemblies of nonlinear materials can exhibit a “latching”
action, or bistability [9], rather like an electronic bistable logic circuit.
The device operation is controlled by the light beam itself and it has
been found to possess exotic properties such as the zero-n gap. This
effect is achieved by means of alternating positive-index and negative-
index materials. It was found that this zero-n gap is robust for scaling
and omnidirectional for oblique incidence, which makes this type of
structures very useful [10–14]. The properties of nonlinear materials
and their effect in periodic structures have been also investigated for
a wide range of applications [15].

Even though the third-order nonlinearity is relatively weak in most
materials, especially if short propagation distances and relatively weak
incident-light intensities are considered, confinement of the field in
optical nanostructures may lead to enhancement of the effect [2, 16].
Hence optical devices based on the third-order nonlinearity may offer
an attractive alternative solution for integrated optoelectronics [17–20].
Unfortunately, numerical modeling of such devices with non-negligible
nonlinearity is very challenging, since techniques based on, e.g., the
solution of the Nonlinear Schrödinger Equations (NLSE) [21] are not
accurate enough, and rigorous methods like Finite Element Method
(FEM) and the Finite-Difference Time-Domain (FDTD) must be used.

FDTD was introduced by Yee [22] in 1966, and it has been proven
to be one of the most powerful numerical techniques in the modeling
of micro and nanoscale optical devices [4, 23–27]. For example, the
analysis of periodic structures can be easily performed by means of
the Periodic Boundary Conditions (PBCs) if the input plane wave
is incident to the structure normally. In the general case of oblique
incidence, however, the phase shift between the periods must be
considered. This can be done, e.g., by the multiple grid approach [28]
or the Split-Field (SF) method [29]. These techniques are based on the
field transformation to eliminate the phase shift (time delay) between
adjacent periods [30], and recently they have been widely used in the
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analysis of periodic structures [31–33].
Even though classical FDTD formulation has been extended

to nonlinear media [4, 5, 23, 24, 34–36], the techniques to include
nonlinearity in the algorithm are not directly applicable to the Split-
Field formulation. In this paper, we present such an extension to
the two-dimensional (2-D) SF-FDTD scheme, which admits efficient
numerical modeling of one-dimensional (1-D) periodic structures with
Kerr-type nonlinearity, even under oblique illumination. We first
derive the theory for the split-field formulation with third-order
nonlinearity, after which we present numerical examples for various
types of structures.

2. THEORY

In this section, the basis for the SF-FDTD method and the
implementation of the different add-ons are fully detailed. In the
following discussion, we assume a structure that is periodic in the
x direction, and that the input light field is a plane wave with
wave vector kinc. We assume oblique incidence such that the wave
vector forms an angle θ0 with the positive z axis (see Fig. 1). In
practice, the periodicity of the problem is introduced by applying
periodic boundary conditions (PBC). Even though we restrict to
one-dimensionally periodic structures for simplicity, extension to the
general case is expected to be done straightforward (c.f. the split-
field formulation for linear media in [32]). We also assume Uniaxial
Perfectly Matched Layer [37, 38] (UPML) for the truncation in the
z direction. The input plane wave source is excited in the structure
following the schemes proposed in [23, 39] for both continuous and
time-limited pulsed waves.

2.1. Basic Concepts of SF-FDTD

Let us next recall the derivation of SF-FDTD. We assume non-
magnetic and non-conducting media, in which case Maxwell’s curl
equations take on the forms

∇×E = −µ0
∂H
∂t

, (1)

∇×H =
∂D
∂t

, (2)

where µ0 is the permeability of free space, and D and H are the time
domain electric flux density and the magnetic field, respectively. It is
convenient to split the electric flux density to the linear and nonlinear
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Figure 1. Scheme of a 2D computational space.

parts with
D = ε0εrE + FNL, (3)

where ε0 is the permittivity of free space, εr denotes the relative
permittivity, and FNL is the nonlinear polarization. Consequently,
Eq. (2) can be rewritten as

∇×H = ε0εr
∂E
∂t

+ JNL, (4)

where JNL is the nonlinear polarization current density defined by
∂FNL/∂t.

Since we have assumed a plane-wave illumination from oblique
incidence, and the structure is periodic in the x direction, the field
everywhere contains a linear x-dependent phase term exp(jkxx), where
kx = (ω/c) sin θ0 is the x component of the wave vector in the phasor
domain, ω is the angular frequency, and c is the speed of light in
vacuum. In the SF formulation, we eliminate the effect of such a phase
term using the transformation

P̆ = Ĕejkxx, (5)

Q̆ = µ0cH̆ejkxx, (6)

where P̆ and Q̆ are the transformed vectors in the phasor domain.
Analogous transformation can also be applied to J̆NL by introducing
the new transformed vector variable ĞNL:

ĞNL = µ0cJ̆NLejkxx (7)

Substituting Eqs. (5)–(7) into Maxwell’s equations, the basis for
the SF-FDTD can be expressed in its time-domain component-wise



Progress In Electromagnetics Research, Vol. 134, 2013 563

form
1
c

∂Px

∂t
= −κ

∂Qy

∂z
− κGNL

x , (8)

1
c

∂Py

∂t
= κ

(
∂Qx

∂z
− ∂Qz

∂x

)
+ sin θ0

κ

c

∂Qz

∂t
− κGNL

y , (9)

1
c

∂Pz

∂t
= κ

∂Qy

∂x
− sin θ0

κ

c

∂Qy

∂t
− κGNL

z , (10)

where P and Q are time-domain vectors, κ = ε−1
r , and

1
c

∂Qx

∂t
=

∂Py

∂z
, (11)

1
c

∂Qy

∂t
=

∂Pz

∂x
− ∂Px

∂z
− sin θ0

1
c

∂Pz

∂t
, (12)

1
c

∂Qz

∂t
= −∂Py

∂x
+ sin θ0

1
c

∂Py

∂t
, (13)

Following [29, 39], we next eliminate the time-derivative terms ∂/∂t ⇔
jω by splitting the field variables:

Px = Pxa − c2µ0κFNL
x ejkxx, (14)

Py = Pya + sin θ0κQz − c2µ0κFNL
y ejkxx, (15)

Pz = Pza − sin θ0κQy − c2µ0κFNL
z ejkxx, (16)

Qx = Qxa, (17)
Qy = Qya − sin θ0Pz, (18)
Qz = Qza + sin θ0Py, (19)

Finally, substituting Eqs. (14)–(19) into the left-hand of Eqs. (8)–(13)
results in equations for “a” fields:

1
c

∂Pxa

∂t
= −κ

∂Qy

∂z
, (20)

1
c

∂Pya

∂t
= κ

(
∂Qx

∂z
− ∂Qz

∂x

)
, (21)

1
c

∂Pza

∂t
= κ

∂Qy

∂x
, (22)

and
1
c

∂Qx

∂t
=

∂Py

∂z
, (23)

1
c

∂Qya

∂t
=

∂Pz

∂x
− ∂Px

∂z
, (24)

1
c

∂Qza

∂t
= −∂Py

∂y
, (25)
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The periodic boundary conditions are now simply applied by forcing
the field values at grid locations

(
x = Λ + ∆u

2

)
and

(
x = ∆u

2

)
to equal

those at
(
x = 3∆u

2

)
and

(
x = Λ− ∆u

2

)
. The constant ∆u is defined in

Subsection 2.2 and it is related with the spatial resolution of SF-FDTD.
In the next subsection, we discuss the implementation of the Lorentz
linear contribution in the permittivity and the polarization terms in
Eqs. (14)–(16) for the specific case of third-order nonlinear media.

2.2. Kerr Model in SF-FDTD

In general, the third-order nonlinear polarization for the Kerr nonlinear
effect is given either by

FKerr(t) = ε0χ
(3)
0 |E|2E, (26)

where χ
(3)
0 is the third-order dielectric susceptibility, or, equivalently,

by

JKerr(t) =
∂FKerr

∂t
=

∂

∂t
ε0χ

(3)
0 |E|2E. (27)

Now, in SF-FDTD, we have [32]

PP∗ = EE∗ = |E|2. (28)

Further, due to the linear relation between JKerr and E, the
transformation into the split-field domain is straightforward:

ĞK = µ0cJ̆Kejkxx =
jω

c
χ

(3)
0 |Ĕ|2P̆, (29)

If we denote the transformed linear polarization current in the
Lorentz model [33] by ĞL, we may now reformulate Eqs. (8)–(10)
in Lorentz media and with the new contribution from the Kerr-type
nonlinearity discussed above:

1
c

∂Px

∂t
= −κ

[
∂Qy

∂z
+ GLx +

1
c
χ

(3)
0

∂|Ex|2Px

∂t

]
, (30)

1
c

∂Py

∂t
=κ

[(
∂Qx

∂z
− ∂Qz

∂x

)
+

1
c

sin θ0
∂Qz

∂t
−GLy− 1

c
χ

(3)
0

∂|Ey|2Py

∂t

]
,(31)

1
c

∂Pz

∂t
= κ

[
∂Qy

∂x
− 1

c
sin θ0

∂Qy

∂t
−GLz −1

c
χ

(3)
0

∂|Ez|2Pz

∂t

]
, (32)

For updating the equations, the Kerr terms must be considered after
updating the “a” fields, since Kerr effect requires solving a nonlinear
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system of coupled equations that depends on P. Hence, Eqs. (14)–(16)
should be reformulated as follows:

Px = Pxa − χ
(3)
0 κ|Ex|2Px, (33)

Py = Pya + sin θ0κQz − χ
(3)
0 κ|Ey|2Py, (34)

Pz = Pza − sin θ0κQy − χ
(3)
0 κ|Ez|2Pz, (35)

where Pma, with m = x, y or z are given by Eqs. (20)–(22) in
nondispersive media and by the following update equations

Pxa|e+1
i+ 1

2
,k

= Pxa|ei+ 1
2
,k
−κ

[
S

(
Qy|e+

1
2

i+ 1
2
,k+ 1

2

−Qy|e+
1
2

i+ 1
2
,k− 1

2

)

+c∆tGLx|e+
1
2

i+ 1
2
,k

]
(36)

Pya|e+1
i,k = Pya|ei,k + κ

[
S

(
Qx|e+

1
2

i,k+ 1
2

−Qx|e+
1
2

i,k− 1
2

−Qz|e+1/2

i+ 1
2
,k

+ Qz|e+1/2

i− 1
2
,k

)
−c∆tGLy|e+

1
2

i,k

]
, (37)

Pza|e+1
i,k+ 1

2

= Pza|ei,k+ 1
2

+ κ

[
S

(
Qy|e+

1
2

i+ 1
2
,k+ 1

2

−Qy|e+
1
2

i− 1
2
,k+ 1

2

)

+c∆tGLz|e+
1
2

i,k+ 1
2

]
. (38)

in Lorentz media, respectively. In these equations, S = c∆t/∆u, being
∆u and ∆t the spatial and time resolutions respectively. The integers
i, k denote the position of sample points in x and z axis whereas the
integeer e localizes a determined time step. The update formula for
GL is fully detailed in [33].

The update step of the total fields given in Eqs. (14)–(19) can be
reformulated removing the temporal dependencies properly and using
only the “a” fields:

Pz =
Pza − κ sin θ0Qya

1 + κ
(
χ

(3)
0 |Ez|2 − sin2 θ0

) = CzP̂za, (39)

Qy = Qya − sin θ0Pz, (40)

Px =
Pxa

1 + κχ
(3)
0 |Ex|2

= CxPxa, (41)

Py =
Pya + κ sin θ0Qza

1 + κ
(
χ

(3)
0 |Ey|2 − sin2 θ0

) = CyP̂ya, (42)

Qz = Qza + sin θ0Py, (43)
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where Cm are the update coefficients defined in

Cx =
1

1 + κχ
(3)
0 Ix

, (44)

Cy =
1

1 + κ
(
χ

(3)
0 Iy − sin2 θ0

) , (45)

Cz =
1

1 + κ
(
χ

(3)
0 Iz − sin2 θ0

) , (46)

and
I = |E|2. (47)

To update I in each time step, a fixed point iteration has to be
performed. The general equation for such a fixed point iteration is
I|p+1 = P|p (P|p)∗ that can be extended for each space coordinate

Ix|p+1 = Cx|p (Cx|p)∗ |Pxa|2, (48)

Iy|p+1 = Cy|p (Cy|p)∗ |P̂ya|2, (49)

Iz|p+1 = Cz|p (Cz|p)∗ |P̂za|2, (50)

where

Cx|p =
1

1 + κχ
(3)
0 Ix|p

, (51)

Cy|p =
1

1 + κ
(
χ

(3)
0 Iy|p − sin2 θ0

) , (52)

Cz|p =
1

1 + κ
(
χ

(3)
0 Iz|p − sin2 θ0

) , (53)

are updated in each iteration. Note that in this case, the subindex p is
an integer related with the iteration step for the fixed point iteration
process, not for the spatial dimension. The fixed point iteration, which
requires the most computational time of the updating process, can be
skipped when the Kerr effect is negligible. The convergence of the fixed
point iteration is proven using Banach’s fixed point theorem [40] that,
in the case of normal incidence, takes on the form

[(
εr + χ

(3)
0 I

)
E

]2
χ

(3)
0 ≤ ε3r

2
. (54)

The amplitude of the electric field E has to be limited to an upper
value that is related with the amplitude of the third-order susceptibility
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χ
(3)
0 to assure convergence of the fixed point iteration. Regarding

the iterative process, an experimental procedure was done in order to
establish an upper limit in the number of iteration. Here, the maximum
number of iteration has been fixed to 30 steps achieving good results
near the upper limit of convergence of the method [40].

3. RESULTS

In this section, we discuss the results derived from the analysis of
nonlinear media. Firstly, we show simulations of temporal solitons,
and compare them with results presented in the literature [4–6, 23].
Secondly, we analyze both DC and AC Kerr effects by means of
the reflectance analysis of different stack of layers with nonlinear
characteristics. Finally, we illustrate the full potential of the SF-FDTD
scheme with the analysis of binary phase gratings made of nonlinear
strips, employing both the normal and oblique incidences.

3.1. Simulation of Temporal Solitons

To validate the results given by the method introduced in the preceding
section, we study the interaction of a pulsed optical-signal source
switched on at t = 0 at the surface z = 0 of a material having
linear dispersive properties. The source is defined as a bandpass
Gaussian pulse with zero DC component and a planar wavefront
perpendicular to the direction of propagation is considered. The
pulse has a maximum absolute amplitude of 1.1 V/m with a carrier
frequency fc = 1.37 · 1014 Hz (λ0 = 2.19µm). Approximately three
cycles of the optical carrier were contained within the pulse envelope.
To demonstrate soliton formation over short propagations spans of
less than 150µm, we chose the parameters following the work of
Joseph et al. [4]:

• Linear dispersion: εs = 5.25, ε∞ = 2.25, ωL = 4 · 1014 s−1,
γL = 2 · 109 s−1.

• Nonlinear material: χ
(3)
0 = 7 · 10−2 (V/m)−2.

We chose the spatial resolution to be 52.5 nm (≈ λ0/40), whereas the
time resolution ∆t was obtained by employing the so called “Courant
condition”, which gives ∆t = ∆u/(

√
2c0) = 129.64 · 10−9 ns.

Figure 2 depicts the results of the dispersive and nonlinear
SF-FDTD computations. In Fig. 2(a) the computed pulse for the
linear Lorentz dispersive is graphed at t = 2000∆t and 4000∆t.
It is clear that the assumed linear dispersion caused substantial
broadening of the computed pulse along with diminishing amplitude
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(b)

(a)

Figure 2. Snapshots of the electric field <{Ey} in different kind of
mediums detected from left to right at times t = 2000∆t (thick line)
and t = 4000∆t (thin line) respectively. (a) Linear dispersive Lorentz
media. (b) Nonlinear Lorentz and Kerr media.

and carrier frequency modulation, being greater on the leading side
of the pulse, and minor on the trailing side of the pulse. Fig. 2(b)
shows the pulse propagation when the Kerr effect is included in the
simulations. As can seen from the figure, a temporal soliton and also a
smaller-magnitude precursor-pulse, that is identified as transient third-
harmonic energy, are formed. These results reproduce those presented
in the literature [4–6].

3.2. Electro-Optic Kerr Effect

Consider next a superposition of a DC electric field Eext and linearly
polarized optical field, with its plane of vibration in the y direction,
propagating in Kerr-type medium. Solving the nonlinear wave
equation for this case, it is possible to describe accurately the behavior
of the electric field using the concept of the effective nonlinear refractive
index of the form

neff = n0 + 3χ
(3)
0 E2

ext +
3χ

(3)
0 E2

y

4
, (55)
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where n0 is a linear refractive index of the medium. The mathematical
process in order to obtain (55) is fully detailed in [16]. In Eq. (55), the
first two terms describe the linear response and the DC Kerr effect,
respectively, whereas the last term gives us the familiar all-optical AC
Kerr nonlinear response. In the following, we analyze the static effect
with low optical-field intensity.

We first apply the SF-FDTD to a short thin-film Bragg-type
reflector, i.e., a stack of layers with λ/4 optical thickness, and with
alternating high and low refractive indices (see Fig. 3). The nonlinear
material is located in the high refractive index material and its value
has been chosen in order to trigger the nonlinearity following the
scheme detailed in the work of Pinto et al. [41]. In FDTD computations
and nonlinear media is very common to scale the susceptibility terms
in order to trigger the nonlinearity with lower intensities reducing

Figure 3. Scheme of a high-reflection coating.

Table 1. Setup parameters of SF-FDTD for results in Fig. 4.

λ0 (nm) ∆u (m) ∆t (s) rx (cells) rz (cells) rPML (cells) esteps

500 λ0/80 ∆u/(
√

2c0) 20 500 40 1000

Table 2. Parameters of the Bragg reflector with nonlinear materials
(static analysis).

nH nL nGlass χ
(3)
0 (m/V)2 λS (nm)

2.3 1.38 1.52 500 633
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(a)

(b)

Figure 4. Reflectance for two high reflection coatings. (a) Air |HL|2G.
(b) Air|HL|3G.

roundoff errors [4, 23, 34, 35]. The SF-FDTD setup for this experiment
is summarized in Table 1, whereas the physical values of the parameters
are listed Table 2.

Figure 4 shows the reflectance of the structure. The number of
periods are two for Fig. 4(a) and three for Fig. 4(b). In both cases
the numerical samples obtained by SF-FDTD are compared with the
theoretical curves obtained by the Characteristic Matrix (CM) method
detailed in [42]. One can see from the figure that the external DC
electric field controls the amplitude-reflectance, as well as the lower
and upper cut-offs of the band edges. When the amplitude of the DC
field becomes considerably greater, the number of secondary lobes and
their amplitude become also relevant. In both cases the numerical and
theoretical values are close.

3.3. Dynamic Kerr Effect

Let us next repeat the analysis of the Bragg-type reflector discussed
in the preceding subsection, but now with no external DC field and
with considerable intensity of the optical field. To work with realistic
intensities, the physical parameters have been modified. The new
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parameters regarding SF-FDTD setup and physical values are listed
in Table 3 and Table 4 respectively. Here the third-order susceptibility
of both materials is non-zero.

Figures 5(a)–(f) show the reflectance as a function of the
parameter λS/λ for the two-period case, whereas Figs. 5(g)–(l)
represent the results with three periods. In both cases, as the input
source intensity becomes greater the differences between SF-FDTD
(circles) results and those obtained by means of the CM method (solid

Table 3. Setup parameters of SF-FDTD for results in Fig. 5.

λ0 (nm) ∆u (m) ∆t (s) rx (cells) rz (cells) rPML (cells) esteps

316.5 λ0/200 ∆u/(
√

2c0) 6 750 100 1600

Table 4. Parameters of the Bragg-reflector with nonlinear materials
(dynamic analysis) [2].

Polymer Fused Silica Glass
nH χ

(3)
H (m/V)2 nL χ

(3)
L (m/V)2 nG

2.81 5.6·10−16 1.47 2.5·10−22 1.52

(b)

(a)

(c)

(d)

(e)

(f)

(h)

(g)

(i)

(j)

(k)

(l)

Figure 5. Reflectance for two high reflection coatings with different
input source intensities. (a)–(h) Air|HL|2G. (g)–(l) Air|HL|3G.
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line) also tend to be relevant. The solid curves are obtained considering
an effective refractive index in the third term of Eq. (55) and neglecting
the second term. This refractive index is the input parameter in
CM. As the input source intensity increases the dynamic behaviour
related with the nonlinear materials also grows and thus the differences
between the dynamic analysis performed by SF-FDTD and the static
performed by CM.

3.4. Binary Phase Gratings

Finally, we turn to investigate structures that are periodic in
lateral direction, namely binary phase gratings, illustrated in Fig. 6.
Throughout the analysis, we assume 50% fill factor, and the nonlinear
material is assumed to be in the pillars only. As is logical in SF-FDTD,
only one period is needed in the simulations. The grating parameters
are given in Table 5.

Figure 7 shows the zeroth-order (η0) and the first-orders (η±1)
efficiencies with different input intensities. The efficiency curves are
slightly modified as the input source intensity is increased. Of course,
even higher intensities would lead to more radical effects but, in
this particular example, we kept the intensities in realistic values for
assumed polymer material to show what kind of effect can be expected
to be observed in the practice.

Figure 6. Binary grating scheme.

Table 5. Setup parameters of SF-FDTD for results in Fig. 7.

λ0 (nm) ∆u (m) ∆t (s) rx (cells) rz (cells) rPML (cells) esteps

633 λ0/60 ∆u/(
√

2c0) 150 400 30 1000
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(b)

(a)

Figure 7. Diffraction efficiencies with different input source
intensities. (a) Zero order. (b) First order. Parameters: ∆/λ0 = 2.5,
ng = 2.48, ns = 1.47, χ

(3)
0 = 5.6 · 10−16 (m/V)2.

h λ

(a)

(b)

(c)

Figure 8. Diffraction efficiencies with different input source
intensities. (a) Minus first-order. (b) Zero-order. (c) First-order.
Parameters: Λ/λ0 = 20, ng = 2.81, ns = 1.47, χ

(3)
0 = 5.6 ·

10−16 (m/V)2.
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8

6

4

2

0
0                          5                       10                       15                       20

5

3

1

-1

-3

-5

z/

x/ λ

λ

Figure 9. Electric Field distribution (Ey) in MV/m as a function
of the space for a binary phase grating. Parameters: Λ/λ0 = 20,
h/λ0 = 1.8, ng = 2.81, ns = 1.47, χ

(3)
0 = 5.6 · 10−16 (m/V)2.

Table 6. Setup parameters of SF-FDTD for results in Figs. 8–9.

λ0 (nm) ∆u (m) ∆t (s) rx (cells) rz (cells) rPML (cells) esteps

633 λ0/30 0.567∆u/(c0) 600 400 15 1200

We also performed the analysis with oblique angle of incidence for
a binary grating with period Λ = 20λ at 30◦. The diffraction efficiencies
are shown in Fig. 8. As with the normal incidence, the influence of the
nonlinear material is relatively small with the assumed combination of
the input-field intensity and the third-order susceptibility.

To further illustrate the potential of the SF-FDTD approach, a
distribution of the electric field is also shown in Fig. 9. As can be seen
from the figure, the SF-FDTD can easily perform simulations with
large periods without excess computational burden, which is not the
case with the standard Yee FDTD scheme that requires inclusion of
several periods in the computation. Namely, as is well known, the
simulation time and required memory grows extremely rapidly as a
function of the dimensions of the computation grid, and hence the use
of SF-FDTD approach in the analysis of laterally periodic structures
is strongly preferred over the classical FDTD.

4. CONCLUSIONS AND OUTLOOK

In this paper, we extended the Split-Field Finite-Difference Time-
Domain to periodic optical media with third-order nonlinearity. This
enables accurate modeling of the AC Kerr effect, which is particularly
important in numerous areas of nonlinear optics. In this method,
the third-order susceptibility is included using the concept of the
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polarization current that requires solving of a nonlinear system of
equations. Hence a fixed-point iterative procedure is needed to
compute the components of the transformed split-field variables related
with the electric field.

We validated the method numerically by comparisons to already-
known structures and phenomena, including temporal solitons in
homogeneous medium and the DC Kerr effect in short Bragg-type
reflector. We then showed the efficiency of the method by analyzing
the Bragg-reflector with AC Kerr effect and, finally, by simulations of
binary phase gratings with nonlinearity, in both normal and oblique
incidence.

The authors are currently working on extending the approach to
anisotropic materials. The computational resources required by the
SF-FDTD in anisotropic media must be considered. Therefore authors
are also working on acceleration strategies based on multi-core CPUs
and GPU computing.
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