Vol. 134
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-12-07
Block Matrix Preconditioner Method for the Electric Field Integral Equation (EFIE) Formulation Based on Loop-Star Basis Functions
By
Progress In Electromagnetics Research, Vol. 134, 543-558, 2013
Abstract
In this paper, electromagnetic scattering problems are analyzed using an electric field integral equation (EFIE) formulation that is based on loop-star basis functions so as to avoid low-frequency instability problems. Moreover, to improve the convergence rate of iterative methods, a block matrix preconditioner (BMP) is applied to the EFIE formulation which is based on loop star-basis functions. Because the matrix system resulting from the conventional method of moments is a dense matrix, a sparse matrix version of each block matrix is constructed, followed by the inversion of the resultant block sparse matrix using incomplete factorization. Numerical results show that the proposed BMP is efficient in terms of computation time and memory usage.
Citation
Jae-Hyun Yeom, Huicheol Chin, Hyo-Tae Kim, and Kyung-Tae Kim, "Block Matrix Preconditioner Method for the Electric Field Integral Equation (EFIE) Formulation Based on Loop-Star Basis Functions," Progress In Electromagnetics Research, Vol. 134, 543-558, 2013.
doi:10.2528/PIER12092403
References

1. Harrington, R. F., Field Computation by Moment Methods, Macmillan, 1968.
doi:10.1109/9780470544631

2. Gibson, W. C., The Method of Moments in Electromagnetics, Chapman & Hall/CRC, 2007.
doi:10.1201/9781420061468

3. Chew, W. C., M. S. Tong, and B. Hu, Integral Equation Methods for Electromagnetic and Elastic Waves, Morgan & Claypool, 2008.
doi:10.2200/S00102ED1V01Y200807CEM012

4. Wang, W. and N. Nishimura, "Calculation of shape derivatives with periodic fast multipole method with application to shape optimization of metamaterials," Progress In Electromagnetic Research, Vol. 127, 46-64, 2012.

5. Liu, Z.-L. and J. Yang, "Analysis of electromagnetic scattering with higher order moment method and NURBS model," Progress In Electromagnetic Research, Vol. 96, 83-100, 2009.
doi:10.2528/PIER09071704

6. Wang, A.-Q., L.-X. Guo, Y.-W. Wei, and J. Ma, "Higher order method of moments for bistatic scattering from 2D PEC rough surface with geometric modeling by NURBS surface," Progress In Electromagnetic Research, Vol. 130, 85-104, 2012.

7. Liu, Z. H., E. K. Chua, and K. Y. See, "Accurate and efficient evaluation of method of moments matrix based on a generalized analytical approach," Progress In Electromagnetic Research, Vol. 94, 367-382, 2009.
doi:10.2528/PIER09063002

8. Ubeda, E., J. M. Tamayo, and J. M. Rius, "Taylor-orthogonal basis functions for the discretization in method of moments of second kind integral equations in the scattering analysis of perfectly conducting or dielectric objects," Progress In Electromagnetic Research, Vol. 119, 85-105, 2011.
doi:10.2528/PIER11051715

9. Guo, L.-X., A.-Q. Wang, and J. Ma, "Study on EM scattering from 2-D target above 1-D large scale rough surface with low grazing incidence by parallel MoM based on PC clusters," Progress In Electromagnetic Research, Vol. 89, 149-166, 2009.
doi:10.2528/PIER08121002

10. Taflov, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, 2000.

11. Wang, J. B., B. H. Zhou, L. H. Shi, C. Gao, and B. Chen, "A novel 3D weakly conditionally stable FDTD algorithm," Progress In Electromagnetic Research, Vol. 130, 525-540, 2012.

12. Xiong, R., B. Chen, Y. Mao, B. Li, and Q.-F. Jing, "A simple local approximation FDTD model of short apertures with a finite thickness," Progress In Electromagnetics Research, Vol. 131, 153-167, 2012.

13. Chen, C.-Y., Q. Wu, X.-J. Bi, Y.-M. Wu, and L. W. Li, "Characteristic analysis for FDTD based on frequency response," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 2-3, 283-292, 2010.
doi:10.1163/156939310790735796

14. Sirenko, K., V. Pazynin, Y. K. Sirenko, and H. Bagci, "An FFT-accelerated FDTD scheme with exact absorbing conditions for characterizing axially symmetric resonant structures," Progress In Electromagnetics Research, Vol. 111, 331-364, 2011.
doi:10.2528/PIER10102707

15. Kusiek, A. and J. Mazur, "Analysis of scattering from arbitrary configuration of cylindrical objects using hybrid finite-difference mode-matching method," Progress In Electromagnetics Research, Vol. 97, 105-127, 2009.
doi:10.2528/PIER09072804

16. Jin, J. M., The Finite Element Method in Electromagnetics, Wiley, 2002.

17. Ping, X. W. and T.-J. Cui, "The factorized sparse approximate inverse preconditioned conjugate gradient algorithm for finite element analysis of scattering problems," Progress In Electromagnetics Research, Vol. 98, 15-31, 2009.
doi:10.2528/PIER09071703

18. Fotyga, G., K. Nyka, and M. Mrozowski, "Efficient model order reduction for FEM analysis of waveguide structures and resonators," Progress In Electromagnetic Research, Vol. 127, 259-275, 2012.

19. Tian, J., Z.-Q. Lv, X.-W. Shi, L. Xu, and F. Wei, "An efficient approach for multifrontal algorithm to solve non-positive definite finite element equations in electromagnetic problems," Progress In Electromagnetics Research, Vol. 95, 121-133, 2009.
doi:10.2528/PIER09070207

20. Gomez-Revuelto, I., L. E. Garcia-Castillo, and M. Salazar-Palma, "Goal-oriented self-adaptive HP-strategies for finite element analysis of electromagnetic scattering and radiation problems," Progress In Electromagnetics Research, Vol. 125, 459-482, 2012.
doi:10.2528/PIER11121606

21. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Transactions on Antenna and Propagation, Vol. 30, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

22. Giuseppe Vecchi, G., "Loop-star decomposition of basis functions in the discretization of the EFIE," IEEE Transaction on Antenna and Propagation, Vol. 47, No. 2, 339-346, 1999.
doi:10.1109/8.761074

23. Zhao, J. S. and W. C. Chew, "Integral equation solution of Maxwell's equations from zero frequency to microwave frequencies," IEEE Transactions on Antenna and Propagation, Vol. 48, 1635-1645, 2000.
doi:10.1109/8.899680

24. Lee, J. F., R. Lee, and R. J. Burkholder, "Loop star basis functions and a robust preconditioner for EFIE scattering problems," IEEE Transactions on Antenna and Propagation, Vol. 51, No. 8, 1855-1863, 2003.
doi:10.1109/TAP.2003.814736

25. Eibert, T. F., "Iterative-solver convergence for loop-star and loop-tree decompositions in method of moments solutions of the electric-field integral equation," IEEE Antenna and Propagation Magazine, Vol. 46, No. 3, 2004.
doi:10.1109/MAP.2004.1374101

26. Hestenes, M. R. and E. Steilfel, "Method of conjugate gradients for solving linear systems," Journal of Research of the National Bureau of Standards, Vol. 49, 409-436, 1952.
doi:10.6028/jres.049.044

27. Saad, Y., "GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems," SIAM Journal on Scientific and Statistical Computing, Vol. 7, 856-869, 1986.
doi:10.1137/0907058

28. Lee, J. F. and D. K. Sun, "p-type multiplicative Schwarz (pMUS) method with vector finite elements for modeling three-dimensional waveguide discontinuities," IEEE Transactions on Microwave Theory and Technology, Vol. 52, No. 3, 864-870, 2004.
doi:10.1109/TMTT.2004.823554

29. Lee, J. F., R. Lee, and F. Teixeira, "Hierarchical vector finite elements with p-type non-overlapping Schwarz method for modeling waveguide discontinuities," CEMS - Computer Modeling in Engineering & Sciences, Vol. 5, No. 5, 423-434, 2004.

30. Malas, T. and L. Gurel, "Schur complement preconditioners for surface integral equation formulation of dielectric problems solved with the multilevel fast multipole algorithm," SIAM Journal on Scientific Computing, Vol. 33, No. 5, 2440-2467, 2011.
doi:10.1137/090780808

31. Saad, Y., Iterative Methods for Sparse Linear Systems, 2nd Edition, PWS, 2003.

32. Benzi, M., C. D. Meyer, and M. Tuma, "A sparse approximate inverse preconditioner for the conjugate gradient method," SIAM Journal on Scientific and Statistical Computing, Vol. 17, 1135-1149, 1996.
doi:10.1137/S1064827594271421

33. Benzi, M., "A sparse approximate inverse preconditioner for nonsymmetric linear systems," SIAM Journal on Scientific and Statistical Computing, Vol. 19, 968-994, 1998.
doi:10.1137/S1064827595294691

34. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, New York, 1989.

35. Jin, J. M., Theory and Computation of Electromagnetic Fields, Wiley, 2010.

36. Li, N., B. Suchomel, D. O. Kuffuor, R. Li, and Y. Saad, "ZITSOL: Iterative solvers package version 1.0,", Department of Computer Science and Engineering,-University of Minnesota, Minneapolis MN55455, 2010, http://www-user.cs.umn.edu/»saad/software/.