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Abstract—In this paper, electromagnetic scattering problems are
analyzed using an electric field integral equation (EFIE) formulation
that is based on loop-star basis functions so as to avoid low-frequency
instability problems. Moreover, to improve the convergence rate of
iterative methods, a block matrix preconditioner (BMP) is applied to
the EFIE formulation based on loop star-basis functions. Because the
matrix system resulting from the conventional method of moments
is a dense matrix, a sparse matrix version of each block matrix is
constructed, followed by the inversion of the resultant block sparse
matrix using incomplete factorization. Numerical results show that the
proposed BMP is efficient in terms of computation time and memory
usage.

1. INTRODUCTION

The method of moments (MoM) techniques based on the electric
field integral equation (EFIE) formulation have been widely used
for analyzing time-harmonic electromagnetic radiation and scattering
from conducting surfaces [1–9]. Because the MoM only requires
surface discretization of conducting bodies and yields solutions that
automatically satisfy the radiation condition, it has some advantages
over other numerical methods such as the finite-difference time-domain
(FDTD) [10–15] method and the finite element method (FEM) [16–20],
particularly in open region problems such as radiation and scattering.
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Unfortunately, the MoM based on the EFIE formulation with Rao-
Wilton-Glisson (RWG) [21] basis functions is very poorly conditioned
at low frequencies. In addition, when the element size is extremely
small compared to the wavelength, this problem may also occur. The
cause of both cases mentioned above is that the contribution of the
vector potential to the resultant matrix becomes negligible, compared
to that of the scalar potential. This problem is usually called the low-
frequency instability problem. The low-frequency instability problem
causes the EFIE with RWG basis functions to be ill-conditioned and
the solution to be inaccurate. This low-frequency instability problem
has been overcome using loop-star basis functions or loop-tree basis
functions in conjunction with frequency scaling of the matrix [3, 22–
25]; however, the resultant matrix is also ill-conditioned. When
iterative methods, such as the conjugate gradient method (CGM) or
the generalized minimal residual method (GMRES) [26, 27], are used
to solve the matrix equation, the iterative methods either converges
very slowly or diverges. Therefore, it is necessary to find appropriate
preconditioning techniques to improve the convergence rate of iterative
methods.

In this paper, the block matrix preconditioner (BMP) originally
proposed by the FEM community [28, 29] and the MoM for penetrable
objects [30] is applied to address the convergence problem in the
EFIE formulation based on loop-star basis functions. Furthermore,
to compute the BMP efficiently, we first create a sparse matrix
from each block matrix by eliminating the small terms in the
matrix entries, and then, the inversion of the constructed sparse
matrix is approximated using incomplete factorization. Finally, the
BMP constructed using the proposed method is compared with the
incomplete LU threshold pivoting (ILUTP) preconditioner [31] to
demonstrate their performance in terms of memory and computation
time, and the effect of the Schur complement, which results from
the block matrix decomposition, is investigated when the BMP is
constructed.

The remainder of this paper is organized as follows. Section 2
presents a review of the EFIE formulation with loop-star basis
functions and presents the proposed preconditioning strategy.
Numerical results and conclusions are presented in Section 3 and
Section 4, respectively.
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2. NUMERICAL METHOD

2.1. EFIE Formulation with Loop-star Basis Functions

When a perfectly conducting object S is placed in free-space, the object
is excited by an incident field Ēinc(r̄), which induces a surface current
J̄(r̄) on the surface of the object. The EFIE is derived by enforcing the
condition that the total electric field tangential to the object is zero.
The EFIE can be written as [1–3]

−n̂×Ēinc(r̄)=n̂×jkη

∫

S′

(
J̄(r̄′)G(r̄, r̄′)+

1
k2
∇′ · J̄(r̄′)∇G(r̄, r̄′)

)
dS′, (1)

where n̂ denotes the unit vector normal to the object, r̄ and r̄′ the
position vectors of the observation and source points, respectively, and
J̄(r̄′) the induced surface current. G(r̄, r̄′) represents the 3D free-space
Green’s functions, and k and η are the free-space wave number and
impedance, respectively. In addition, in this paper, the time convention
used is ejωt. A set of basis functions f̄n is used to expand the induced
surface current density

J̄(r̄′) =
N∑

n=1

anf̄n

(
r̄′

)
, (2)

where N and an are the number of basis functions and the coefficients,
respectively, which have yet to be determined. The matrix equation
can be constructed by substituting Equation (2) into Equation (1)
and testing the integral equation with the same basis function. The
resultant matrix equation is

[
Z1 +

1
k2

Z2

]
I = V, (3)

where

[Z1]m,n =
∫

S

∫

S′
f̄m(r̄) · f̄n(r̄′)G(r̄, r̄′)dS′dS,

[Z2]m,n = −
∫

S

∫

S′
∇ · f̄m(r̄)∇′ · f̄n(r̄′)G(r̄, r̄′)dS′dS,

[V ]m =
j

kη

∫

S
f̄m(r̄) · Ēinc(r̄)dS,

and I and V are the coefficients of expansion and the discrete form
of the excitation, respectively. In Equation (3), the primary cause of
the low-frequency instability problem in the MoM approximation can
be determined [3, 22–25]. When the frequency approaches zero, the
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contribution from Z2 in Equation (3) dominates that from Z1 because
of the 1/k2 term. As a result, the above matrix equation degenerates
to Z2I ≈ 0, and Z2 becomes a nearly singular matrix because I 6= 0.
This phenomenon makes the resultant matrix equation very difficult
to solve at low frequencies. To overcome the low-frequency instability
problem, the unknown induced surface current is decomposed into loop
currents and star currents [22–25]:

J̄(r̄) =
NL∑

n=1

aL
n f̄L

n (r̄) +
NS∑

n=1

aS
n f̄S

n (r̄), (4)

where NL and NS are the number of loop and star basis functions,
respectively, and f̄L

n (r̄) and f̄S
n (r̄) correspond to solenoidal parts

(loop basis functions) and non-solenoidal parts (star basis functions),
respectively. Then, Equation (1) can be converted into the block
matrix equation by using loop and star currents as the basis functions
and the same testing functions.

The resultant matrix equation is[
ZLL ZLS

ZSL ZSS

] [
IL

IS

]
=

[
V L

V S

]
. (5)

The matrix elements in the above equation are given as follows:
[
ZLL

]
m,n

=
∫

S

∫

S′
f̄L

m(r̄) · f̄L
n (r̄′)G(r̄, r̄′)dS′dS,

[
ZLS

]
m,n

=
∫

S

∫

S′
f̄L

m(r̄) · f̄S
n (r̄′)G(r̄, r̄′)dS′dS,

[
ZSL

]
m,n

=
∫

S

∫

S′
f̄S

m(r̄) · f̄L
n (r̄′)G(r̄, r̄′)dS′dS,

[
ZSS

]
m,n

=
∫

S

∫

S′

(
f̄S

m(r̄)·f̄S
n (r̄′)− 1

k2
∇·f̄S

m(r̄)∇′ ·f̄S
n

(
r̄′

))
G

(
r̄,r̄′

)
dS′dS,

[
V L

]
m,n

=
j

kη

∫

S
f̄L

m(r̄) · Ēinc(r̄)dS,

and
[
V S

]
m

=
j

kη

∫

S
f̄S

m(r̄) · Ēinc(r̄)dS.

To obtain a stable system at low frequencies, Equation (5) can be
scaled as [3][

1 0
0 k

] [
ZLL ZLS

ZSL ZSS

] [
1 0
0 k

] [
1 0
0 1

k

] [
IL

IS

]
=

[
1 0
0 k

] [
V L

V S

]
. (6)

The above equation can be compactly written as[
ZLL kZLS

kZSL k2ZSS

] [
IL

k−1IS

]
=

[
V L

kV S

]
. (7)
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The 2 × 2 block matrix on the left-hand side in Equation (7) is
usually called the normalized impedance matrix. Using the above
frequency scaling technique and the loop-star basis functions with
Equation (7) can yield a stable solution. Unfortunately, when the
entries of ZSS is evaluated, the charge term arising from divergence of
the star basis makes block matrix k2ZSS ill-conditioned [3, 23]. As
a result, when iterative methods are used to solve Equation (7), it
converges very slowly. Therefore, it is essential to use a preconditioner
to efficiently solve Equation (7) by iterative methods. In the next
section, we introduce a new method for accelerating the convergence
of the described iterative methods.

2.2. Proposed Block Matrix Preconditioner

As discussed in the previous section, an effective and novel
preconditioner can be incorporated into iterative methods to improve
the convergence rate. That is, the preconditioned matrix equation is
solved as follows [31]:

M−1ZI = M−1V, (8)

where M is called the preconditioner, M is a nonsingular matrix of
order N . In general, the preconditioner M should be chosen such that
the condition number of the preconditioned matrix M−1Z is less than
that of the original matrix. As a result, the computation time for
iterative methods to solve a matrix equation can be greatly reduced.
To avoid low-frequency instability, loop-star basis functions are used
to construct Equation (7). Equation (7) resulting from the MoM based
on these functions can be partitioned as

Z =
[
ZLL ZLS

ZSL ZSS

]
. (9)

Because block matrices ZLL, ZLS , ZSL, and ZSS in the conventional
MoM are dense matrices, sparse versions of these matrices are
preferred when computing the inversion of a precondition matrix M−1.
Therefore, we use the following approach to construct the sparse
matrix. When the matrix system is based on the MoM, the matrix
entries corresponding to the self-singularity or near-singularity terms
of triangle pairs have strong couplings. Therefore, a sparse matrix
corresponding to each dense block matrix is first constructed using
those matrix entries that include strong coupling and removing those
that have weak coupling. In the previous study, the concept of the
diagonal block approximate inverse preconditioner (DBAI) was used
to create a sparse matrix from a given dense matrix [24]. In the
present study, DBAI is extended to both off-diagonal block matrices
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and diagonal block matrices, and is applied to each block matrix
with different parameters because each block matrix has the different
property. The sparse matrix formulation is given by

ZLL
sparse =

N∑

m=1

N∑

n∈S1(m)

[Z]m,n,

ZLS
sparse =ZSL

sparse =
N∑

m=1

N∑

n∈S2(m)

[Z]m,n,

ZSS
sparse =

N∑

m=1

N∑

n∈S3(m)

[Z]m,n,

S1(m)={n | |∆m −∆n| ≤ N0.03(Rm + Rn)},
S2(m)={n | |∆m −∆n| ≤ N0.02(Rm + Rn)},
S3(m)={n | |∆m −∆n| ≤ N0.07(Rm + Rn)},

(10)

where N , S1(m), S2(m), and S3(m) denote the number of basis
functions, and the three sets of basis functions corresponding to
self-singularity or near-singularity of test functions, respectively.
|∆m −∆n| is the distance between the centroid of the test triangle and
the centroid of the source triangle, including the testing functions and
the basis functions, respectively. Rm and Rn represent the radius of the
circumcircles of the test triangle and the source triangle, respectively.
On the right-hand side of Equation (10), the factors Rm and Rn are
introduced to include the entries corresponding to the self-singularity
and near-singularity terms in the matrix entries. Furthermore, the
weighting coefficients, such as N0.03, N0.02, and N0.07, also allow the
sparse matrix to include more entries as N increases [24]. When each
weighting coefficient is large, however, the nonzero entries of each block
sparse matrix and the computational resources, which are required
to construct the preconditioner, also increase dramatically. In order
to overcome this problem and deal with the block matrix efficiently,
we have chosen the different weighting coefficients. Because the ZSS

block matrix is ill-conditioned [23], we have chosen that the sparse
matrix corresponding to the ZSS block matrix should include more
entries than those corresponding to other block matrices. Thus, the
weighting coefficient of S3(m) is selected to be larger than the other
weighting factors in Equation (10), whereas the weighting coefficient
corresponding to the off-diagonal block matrices in Equation (9) is least
chosen because the off-diagonal block matrices have the weak coupling
compared to the ZLL and ZSS block matrices. Since the ZLL block
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matrix is well conditioned [23], moreover, the weighting coefficient of
S1(m) is selected to be between the coefficient of ZSS block matrix and
that of the off-diagonal block matrices. Once the block sparse matrix
is constructed with Equation (10), the BMP can be computed using
Gaussian elimination of the block matrix system (9). The 2× 2 block
matrix can be decomposed into matrix product form [28–30]:

Z=
[
ZLL ZLS

ZSL ZSS

]

≈
[
ZLL

sparse ZLS
sparse

ZSL
sparse ZSS

sparse

]

=
[

ILL 0
ZSL

sparse

(
ZLL

sparse

)−1
ISS

][
ZLL

sparse 0
0 ZSS

sparse−ZSL
sparse

(
ZLL

sparse

)−1
ZLS

sparse

]

[
ILL (ZLL

spasrse)
−1ZLS

sparse

0 ISS

]
, (11)

and its inverse can be found as follows:

Z−1 ≈
[
ILL −(ZLL

sparse)
−1ZLS

sparse

0 ISS

]

[
(ZLL

sparse)
−1 0

0 (ZSS
sparse − ZSL

sparse(Z
LL
sparse)

−1ZLS
sparse)

−1

]

[
ILL 0

−ZSL
sparse(Z

LL
sparse)

−1 ISS

]
, (12)

where ILL and ISS are the identity matrices of size NL×NL and NS×
NS , which indicate the number of loop basis functions and star basis
functions, respectively. The block matrix in Equation (12) involves
inversion of both the first block ZLL

sparse and the Schur complement
S = ZSS

sparse − ZSL
sparse(Z

LL
sparse)

−1ZLS
sparse . Because the coupling of

ZSL
sparse(Z

LL
sparse)

−1ZLS
sparse is negligible, the Schur complement S can be

approximated as the inversion of ZSS
sparse . The effectiveness of the

approximation to ZSS
sparse will be considered in the numerical results.

Finally, the proposed BMP M−1 can be determined as follows:

M−1 =
[
ILL −(ZLL

sparse)
−1ZLS

sparse

0 ISS

] [
(ZLL

sparse)
−1 0

0 (ZSS
sparse)

−1

]

[
ILL 0

−ZSL
sparse(Z

LL
sparse)

−1 ISS

]
(13)

This preconditioner can be applied at each iteration in iterative
methods via matrix multiplication. Because the BMP requires the
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inversion of each block matrix ZLL
sparse and ZSS

sparse separately, different
dropping parameters can be applied to the approximate inverse
methods such as incomplete LU decomposition [31] and the sparse
approximate inverse method (SAI) [32, 33]. Moreover, because the
ZLL

sparse and ZSS
sparse block matrices are almost independent of frequency,

the BMP has uniform memory demands and construction time over
a wide range of frequencies. The effectiveness of the proposed
preconditioner will be demonstrated in numerical results.

3. NUMERICAL RESULTS

3.1. Validation of the EFIE Formulation with Loop-star
Basis Functions

To validate that EFIE formulation that uses loop-star basis functions,
the monostatic radar cross section (RCS) of a perfect electrically
conducting (PEC) sphere with a radius of 1 m is analyzed from 10−6 Hz
to 300 MHz for an x-polarized incident wave impinging on the sphere
from the −z direction. The sphere is discretized into 4462 inner edges
that have an average length of 0.1λ at 300MHz. GMRES (50), in
conjunction with BMP, is used to solve the matrix system. Here, the
notation GMRES (50) implies that GMRES restarts after every 50
iterations. Furthermore, the performance of the BMP is compared
with that of the ILUTP precondition [31]. Iteration is terminated once
the relative residual error is less than 10−3. From the sparse matrix
constructed with Equation (10), the dropping tolerance of the ILUTP
is set to 10−4 and the approximate inverse of the sub-matrix (ZLL

spasrse,
ZSS

sparse) in Equation (13) is also calculated using the ILUTP. The two
dropping tolerances of the individual sub-diagonal matrices in the BMP
are 10−3 and 10−6, respectively. The column pivoting tolerances in the
BMP and the ILUTP are 0.05.

Figure 1(a) and Figure 1(b) show the monostatic RCS patterns
of a PEC sphere versus frequency. The results obtained from the
loop-star basis functions with the BMP and the ILUTP are nearly
identical, and they agree with the Mie-series [34, 35] very well over a
very wide range of frequencies. Moreover, Figure 1(c) and Figure 1(d)
show the number of iterations and CPU time, respectively, that
are required for the residual error of GMRES (50) to converge to
10−3. As shown in Figure 1(c) and Figure 1(d), the performance
of the BMP is very similar to that of the ILUTP from 10−6 Hz to
100MHz. However, GMRES (50) with the BMP converges faster than
GMRES (50) with the ILUTP, especially at frequencies greater than
100MHz. In Figure 1(e) and Figure 1(f), the construction time and the
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(a) (b)

(c) (d)

(e) (f)

Figure 1. Scattering analysis of a PEC sphere with 1 m radius from
10−6 Hz to 300 MHz. (a) Monostatic RCS pattern between 10−6 Hz and
10MHz. (b) Monostatic RCS pattern between 10 MHz and 300 MHz.
(c) Number of iterations required to converge to 10−3. (d) CPU
time required to solve the matrix system. (e) CPU time required to
construct the preconditioner matrix. (f) Memory (MB) required to
construct the preconditioner.
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memory required for the BMP remains nearly constant from 10−6 Hz
to 300 MHz. On the other hand, the ILUTP demands significantly
more computational resources than BMP as frequency increases.

(a)

(b)

Figure 2. Scattering analysis of a cone-sphere. The total length of the
object is 45 cm. A 3 GHz plane wave is incident from the −z direction
and is x-polarized. (a) The geometry of a cone-sphere. (b) Convergence
history.

(b)

(a)

Figure 3. Scattering analysis of an open-cone. The total height of
the object is 20 cm; the base radius is 20 cm. A 3 GHz plane wave is
incident from the −z direction and is x-polarized. (a) The geometry
of an open-cone. (b) Convergence history.



Progress In Electromagnetics Research, Vol. 134, 2013 553

3.2. Convergence Comparison of Iterative Solver with
Preconditioner

In this section, the performance of the proposed preconditioner is
analyzed for three different objects: a cone-sphere, an open-cone, and
an open-cavity. All simulations were conducted with an x-polarized
incident wave that impinges upon the object from the −z direction.
The cone-sphere and the open-cone were analyzed at 3GHz, whereas
the open-cavity was analyzed at 5GHz. Moreover, all the objects
were discretized with the 0.1λ average edge length. GMRES (50)
was also used to solve the matrix equations, and the zero vector
was used as the initial value for all simulations. Figures 2–4 show
the convergence history when the BMP and the ILUTP are used
to solve the matrix system resulting from the use of the MoM.
In addition, the dropping tolerance of the ILUTP is set to 10−4,
and the approximate inverse of the sub-matrix (ZLL

spasrse, ZSS
sparse)

is calculated using the ILUTP. The two dropping tolerances of the
individual sub-diagonal matrices in the BMP also are 10−3 and 10−6.
In order to show the effect of the Schur complement resulting from
the block matrix decomposition, moreover, the partial incomplete LU
threshold (PILUT) are used to approximate the inversion of ZLL

sparse

and construct ZSS
sparse − ZSL

sparse(Z
LL
sparse)

−1ZLS
sparse [36]. The ILUTP

are also used to approximate the inversion of the Schur complement,
resulting from the PILUT. The dropping tolerances of (ZLL

sparse)
−1 and

(ZSS
sparse − ZSL

sparse(Z
LL
sparse)

−1ZLS
sparse)

−1 also are 10−3 and 10−6. The

(a) (b)

Figure 4. Scattering analysis of an open-cavity. The total height of
the object is 18 cm; the width of the object is 9 cm. A 5 GHz plane
wave is incident from the −z direction and is x-polarized. (a) The
geometry of an open-cavity. (b) Convergence history.
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Table 1. Comparisons of the ILUTP-GMRES, BMP-GMRES, PILUT
+ ILUTP-GMRES for the PEC scattering problems.

Unknowns
(N)

Preconditioning 
method

Memory 
(MB)

Iteration
(s)

Construction
time
(s)

Solution 
time
(s)

Cone-sphere
3828

(1277, 2551)
BMP (1e   , 1e  )-3 -6 32.07 96 2.1 28.07

PILUT + ILUTP
(1e  , 1e  )-3 -6 75.62 92 32.25 29.83

Open-cone
7915

(2593, 5322)

ILUTP (1e   ) -4 147.25 446 77.81 734.61

BMP (1e   , 1e  )-3 -6 83.30 41 8.77 65.80

PILUT + ILUTP
(1e   , 1e  )-3 -6

Open-cavity
8494

(2811, 5683)

ILUTP (1e   )-4 200.27 >3000 111.76 >5367.79

BMP (1e  , 1e   )-3 -6

PILUT + ILUTP
(1e  , 1e   )-3 -6

301.91 35 316.03 55.79

100.44 234 11.84 395.32

394.80 209 329.89 357.23

ILUTP (1e   )-4 51.25 573 10.67 167.34

column pivoting tolerances of all preconditiong methods are 0.05.
Iteration is terminated when the relative residual error is less than
10−3; the maximum number of iterations is limited to 3000. The
simulations are carried out on a Pentium 4 with an Intel core i7-2600
processor and 16-GB RAM.

In all simulations, GMRES (50) with the BMP converged
considerably faster than GMRES (50) with the ILUTP. In particular,
GMRES (50) with the ILUTP preconditioner did not converge in the
case of the open-cavity. On the other hand, GMRES (50) with the
BMP only required 234 iterations to converge to 10−3. When the
BMP is compared to the PILUT + ILUTP, moreover, two results
are nearly identical. Here the notation PILUT + ILUTP implies
the BMP including the Schur complement. Table 1 summarizes the
computational demands of the ILUTP and the BMP for the three
objects. In the second column, the number of loop basis functions
and star basis functions are included in parenthesis. As shown in
Table 1, both the required construction time and the solution time
of the BMP are considerably less than those of the ILUTP. Moreover,
the BMP requires less memory storage than the ILUTP. When the
BMP is compared to the BMP including the Schur complement, the
proposed BMP is efficient in terms of computation time and memory
usage.
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4. CONCLUSION

Electromagnetic scattering problems are analyzed using EFIE
formulation based on loop-star basis functions. Use of an EFIE
formulation using loop-star basis functions remedies the low- frequency
instability that occurs in RWG basis functions. However, the matrix
resulting from the EFIE formulation using loop-star basis functions is
not suitable for use with iterative methods because of its requirement
for a large number of iterations. In this paper, we propose a
new method for improving the convergence rate of iterative methods
and computing a preconditioner efficiently. To construct a block
sparse matrix from a dense matrix, the matrix entries including
strong coupling are the only ones retained, and GMRES with the
BMP is applied to solve EFIE formulation based on loop-star basis
functions. As a result, the preconditioned EFIE using the proposed
BMP dramatically reduced the number of iterations required for
convergence. Through numerical results, the proposed BMP is efficient
in terms of computation time and memory usage.
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