1. Landau, L. and E. M. Lifschitz, Electrodynamics of Continuous Media, Elsevier, New York, 1984.
2. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699
3. Pendry, J. B., A. J. Holden, D. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002
4. Shelby, R., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, 2001.
doi:10.1126/science.1058847
5. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184
6. Zhang, S., W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Physical Review Letters, Vol. 95, 137404, 2005.
doi:10.1103/PhysRevLett.95.137404
7. Shalaev, V. M., W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Optics Letters, Vol. 30, No. 24, 3356-3358, 2005.
doi:10.1364/OL.30.003356
8. Dolling, G., M. Wegener, C. M. Soukoulis, and S. Linden, "Negative-index metamaterial at 780nm wavelength," Optics Letters, Vol. 32, No. 1, 53-55, 2007.
doi:10.1364/OL.32.000053
9. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966
10. Garcia, N. and M. Nieto-Vesperinas, "Left-handed materials do not make a perfect lens," Physical Review Letters, Vol. 88, 207403, 2002.
doi:10.1103/PhysRevLett.88.207403
11. Grbic, A. and G. V. Eleftheriades, "Overcoming the diffraction limit with a planar left-handed transmission-line lens," Physical Review Letters, Vol. 92, 117403, 2004.
doi:10.1103/PhysRevLett.92.117403
12. Parimi, P. V., W. T. Lu, P. Vodo, and S. Sridhar, "Imaging by flat lens using negative refraction," Nature, Vol. 426, 404, 2003.
doi:10.1038/426404a
13. Fang, N., H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science, Vol. 308, No. 5721, 534-537, 2005.
doi:10.1126/science.1108759
14. Chew, W. C., "Some reflections on double negative materials," Progress In Electromagnetics Research,, Vol. 51, 1-26, 2005.
doi:10.2528/PIER04032602
15. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, 2006.
doi:10.1126/science.1125907
16. Leonhardt , U., "Optical conformal mapping," Science, Vol. 312, No. 5781, 1777-1780, 2006.
doi:10.1126/science.1126493
17. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
doi:10.1126/science.1133628
18. Li, J. and J. B. Pendry, "Hiding under the carpet: A new strategy for cloaking," Physical Review Letters, Vol. 101, 203901, 2008.
doi:10.1103/PhysRevLett.101.203901
19. Cheng, X., H. Chen, B. I. Wu, and J. A. Kong, "Cloak for bianisotropic and moving media," Progress In Electromagnetics Research, Vol. 89, 199-212, 2009.
doi:10.2528/PIER08120803
20. Cheng, Q., W. X. Jiang, and T. J. Cui, "Investigations of the electromagnetic properties of three-dimensional arbitrarily-shaped cloaks," Progress In Electromagnetics Research, Vol. 94, 105-117, 2009.
doi:10.2528/PIER09060705
21. Cheng, X., H. Chen, X.-M. Zhang, B. Zhang, and B. I. Wu, "Cloaking a perfectly conducting sphere with rotationally uniaxial nihility media in monostatic radar system," Progress In Electromagnetics Research, Vol. 100, 285-298, 2010.
doi:10.2528/PIER09112002
22. Lai, Y., J. Ng, H. Y. Chen, D. Han, J. Xiao, Z. Q. Zhang, and C. T. Chan, "Illusion optics: The optical transformation of an object into another object," Physical Review Letters, Vol. 102, 253902, 2009.
doi:10.1103/PhysRevLett.102.253902
23. Duan, Z. Y., B. I. Wu, S. Xi, H. S. Chen, and M. Chen, "Research process in reversed cherenkov radiation in double-negative metamaterials," Progress In Electromagnetics Research, Vol. 90, 75-87, 2009.
doi:10.2528/PIER08121604
24. Silveirinha, M. and N. Engheta, "Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials," Physical Review Letters, Vol. 97, 157403, 2006.
doi:10.1103/PhysRevLett.97.157403
25. Silveirinha, M. and N. Engheta, "Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media," Physical Review B, Vol. 75, 075119, 2007.
doi:10.1103/PhysRevB.75.075119
26. Silveirinha, M. G. and N. Engheta, "Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials," Physical Review B, Vol. 76, 245109, 2007.
doi:10.1103/PhysRevB.76.245109
27. Alu, A. and N. Engheta, "Dielectric sensing in ε-near-zero narrow waveguide channels," Physical Review B, Vol. 78, 045102, 2008.
doi:10.1103/PhysRevB.78.045102
28. Alu, A., M. G. Silveirinha, and N. Engheta, "Transmission-line analysis of ε-near-zero-filled narrow channels," Physical Review E, Vol. 78, 016604, 2008.
doi:10.1103/PhysRevE.78.016604
29. Edwards, B., A. Alu, M. G. Silveirinha, and N. Engheta, "Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects," Journal of Applied Physics, Vol. 105, No. 4, 044905, 2009.
doi:10.1063/1.3074506
30. Liu, R., Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, "Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies," Physical Review Letters, Vol. 100, 023903, 2008.
doi:10.1103/PhysRevLett.100.023903
31. Edwards, B., A. Alu, M. E. Young, M. Silveirinha, and N. Engheta, "Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide," Physical Review Letters, Vol. 100, 033903, 2008.
doi:10.1103/PhysRevLett.100.033903
32. Halterman, K. and S. Feng, "Resonant transmission of electromagnetic fields through subwavelength zero-ε slits," Physical Review A, Vol. 78, 021805, 2008.
doi:10.1103/PhysRevA.78.021805
33. Ziolkowski, R. W., "Propagation in and scattering from a matched metamaterial having a zero index of refraction," Physical Review E, Vol. 70, 046608, 2004.
doi:10.1103/PhysRevE.70.046608
34. Enoch, S., G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission," Physical Review Letters, Vol. 89, 213902, 2002.
doi:10.1103/PhysRevLett.89.213902
35. Alu, A., M. G. Silveirinha, A. Salandrino, and N. Engheta, "Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern," Physical Review B, Vol. 75, 155410, 2007.
doi:10.1103/PhysRevB.75.155410
36. Hao, J., W. Yan, and M. Qiu, "Super-reflection and cloaking based on zero index metamaterial," Applied Physics Letters, Vol. 96, No. 10, 101109, 2010.
doi:10.1063/1.3359428
37. Jin, Y. and S. He, "Enhancing and suppressing radiation with some permeability-near-zero structures," Optics Express,, Vol. 18, No. 16, 16587-16593, 2010.
doi:10.1364/OE.18.016587
38. Nguyen, V. C., L. Chen, and K. Halterman, "Total transmission and total re°ection by zero index metamaterials with defects Physical Review Letters,", Vol. 105, 233908, 2010.
39. Xu, , Y. and H. Chen, "Total reflection and transmission by epsilon-near-zero metamaterials with defects," Applied Physics Letters, Vol. 98, No. 11, 113501, 2011.
doi:10.1063/1.3565172
40. Wang, L. G., Z. G.Wang, J. X. Zhang, and S. Y. Zhu, "Realization of Dirac point with double cones in optics," Optics Letters, Vol. 34, No. 10, 1510-1512, 2009.
doi:10.1364/OL.34.001510
41. Novoselov, K. S., A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Gregorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," Science, Vol. 306, No. 5696, 666-669, 2004.
doi:10.1126/science.1102896
42. Novoselov, K. S., A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, "Two-dimensional gas of massless dirac fermions in grapheme," Nature, Vol. 438, 197-200, 2005.
doi:10.1038/nature04233
43. Zhang, Y., Y. W. Tan, H. L. Stormer, and P. Kim, "Experimental observation of the quantum hall effect and Berry's phase in grapheme," Nature, Vol. 438, 201-204, 2005.
doi:10.1038/nature04235
44. Katsnelson, M. I., K. S. Novoselov, and A. K. Geim, "Chiral tunnelling and the Klein paradox in graphene," Nature Physics, Vol. 2, 620-625, 2006.
doi:10.1038/nphys384
45. Morozov, S. V., K. S. Novoselov, M. I. Katsnelson, F. Schedin, L. A. Ponomarenko, D. Jiang, and A. K. Geim, "Strong suppression of weak localization in graphene," Physical Review Letters, Vol. 97, 016801, 2006.
doi:10.1103/PhysRevLett.97.016801
46. Neto, A. H. C., F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, "The electronic properties of grapheme," Reviews of Modern Physics, Vol. 81, 109-162, 2009.
doi:10.1103/RevModPhys.81.109
47. Geim, A. K. and A. H. MacDonald, "Graphene: Exploring carbon flatland," Physics Today, Vol. 60, No. 8, 35-41, 2007.
doi:10.1063/1.2774096
48. Geim, A. K. and K. S. Novoselov, "The rise of graphenes," Nature Materials, Vol. 6, 183-191, 2007.
doi:10.1038/nmat1849
49. Huang, X., Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, "Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials," Nature Materials, Vol. 10, 582-586, 2011.
doi:10.1038/nmat3030
50. Liu, F., X. Huang, and C. T. Chan, "Dirac cones at k = 0 in acoustic crystals and zero refractive index acoustic materials," Applied Physics Letters, Vol. 100, No. 7, 071911, 2012.
doi:10.1063/1.3686907
51. Liu, F., Y. Lai, X. Huang, and C. T. Chan, "Dirac cones at k = 0 in phononic crystals," Physical Review B, Vol. 84, 224113, 2011.
doi:10.1103/PhysRevB.84.224113
52. Plihal, M. and A. A. Maradudin, "Photonic band structure of a two-dimensional system: The triangular lattice," Physical Review B, Vol. 44, 8565, 1991.
doi:10.1103/PhysRevB.44.8565
53. Haldane, F. D. M. and S. Raghu, "Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,", Vol. 100, 013904, 2008.
54. Raghu, S. and F. D. M. Haldane, "Analogs of quantum-hall-effect edge states in photonic crystals," Physical Review A, Vol. 78, 033834, 2008.
doi:10.1103/PhysRevA.78.033834
55. Ochiai, T. and M. Onoda, "Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states," Physical Review B, Vol. 80, 155103, 2009.
doi:10.1103/PhysRevB.80.155103
56. Ochiai, T., "Topological properties of bulk and edge states in honeycomb lattice photonic crystals: The case of TE polarization," Journal of Physics: Condensed Matter, Vol. 22, No. 22, 225502, 2010.
doi:10.1088/0953-8984/22/22/225502
57. Sepkhanov, R. A., J. Nilsson, and C. W. J. Beenakker, "Proposed method for detection of the pseudospin | 1/2 Berry phase in a photonic crystal with a Dirac spectrum," Physical Review B, Vol. 78, 045122, 2008.
doi:10.1103/PhysRevB.78.045122
58. Mei, J., Y. Wu, C. T. Chan, and Z. Q. Zhang, "First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals," Physical Review B, Vol. 86, 035141, 2012.
doi:10.1103/PhysRevB.86.035141
59. Sepkhanov, R. A., Y. B. Bazaliy, and C. W. J. Beenakker, "Extremal transmission at the Dirac point of a photonic band structure," Physical Review A, Vol. 75, 063813, 2007.
doi:10.1103/PhysRevA.75.063813
60. Diem, M., T. Koschny, and C. M. Soukoulis, "Transmission in the vicinity of the Dirac point in hexagonal photonic crystals," Physica B, Vol. 405, 2990-2995, 2010.
doi:10.1016/j.physb.2010.01.020
61. Zhang, X., "Observing Zitterbewegung for photons near the Dirac point of a two-dimensional photonic crystal," Physical Review Letters, Vol. 100, 113903, 2008.
doi:10.1103/PhysRevLett.100.113903
62. Zhang, X. and Z. Liu, "Extremal transmission and beating effect of acoustic waves in two-dimensional sonic crystals," Physical Review Letters, Vol. 101, 264303, 2008.
doi:10.1103/PhysRevLett.101.264303
63. Wang, L. G., Z. G. Wang, and S. Y. Zhu, "Zitterbewegung of optical pulses near the dirac point inside a negative-zero-positive index metamaterial," EPL, Vol. 86, 47008, 2009.
doi:10.1209/0295-5075/86/47008
64. Sakoda, K., "Dirac cone in two- and three-dimensional metamaterials," Optics Express, Vol. 20, No. 4, 3898-3912, 2012.
doi:10.1364/OE.20.003898
65. Sakoda, K. and H. Zhou, "Role of structural electromagnetic resonances in a steerable left-handed antenna," Optics Express, Vol. 18, No. 26, 27371-27386, 2010.
doi:10.1364/OE.18.027371
66. Sakoda, K. and H. Zhou, "Analytical study of two-dimensional degenerate metamaterial antennas," Optics Express, Vol. 19, No. 15, 13899-13921, 2011.
doi:10.1364/OE.19.013899
67. Sakoda, K., "Double Dirac cones in triangular-lattice metamaterials," Optics Express, Vol. 20, No. 9, 9925-9939, 2012.
doi:10.1364/OE.20.009925
68. Inui, T., Y. Tanabe, and Y. Onodera, Group Theory and Its Applications in Physics, Springer, Berlin, 1990.
doi:10.1007/978-3-642-80021-4
69. Wu, Y., J. Li, Z. Q. Zhang, and C. T. Chan, "Effective medium theory for magnetodielectric composites: Beyond the long-wavelength limit," Physical Review B, Vol. 74, 085111, 2006.
doi:10.1103/PhysRevB.74.085111
70. Sakoda, K., Optical Properties of Photonic Crystals, 2nd Ed., Springer-Verlag, Berlin, 2004.
71. Li, J. and C. T. Chan, "Double-negative acoustic metamaterial," Physical Review E, Vol. 70, 055602, 2004.
doi:10.1103/PhysRevE.70.055602
72. Wu, Y. and Z. Q. Zhang, "Dispersion relations and their symmetry properties of electromagnetic and elastic metamaterials in two dimensions," Physical Review B, Vol. 79, 195111, 2009.
doi:10.1103/PhysRevB.79.195111