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Abstract—We show that by applying accidental degeneracy, we can
obtain a triply-degenerate state at the zone center in the band diagram
of two dimensional (2D) photonic crystal. The dispersion near the zone
center comprises two linear bands and an additional flat band crossing
at the same frequency. If this triply-degenerate state is formed by
the degeneracy of monopole and dipole excitations, we show that the
system can be mapped to an effective medium with permittivity and
permeability equal to zero. While “Dirac cone” dispersions can only
be meaningfully defined in 2D systems, the notion of a Dirac point
can be extended to three dimensional (3D) classical wave systems.
We show that a simple cubic photonic crystal composed of core-shell
spheres exhibits a 3D Dirac-like point at the center of the Brillouin
zone at a finite frequency. Using effective medium theory, we can map
our structure to an isotropic zero refractive index material in which
the effective permittivity and permeability are simultaneously zero at
the Dirac-like point frequency (ωD). The Dirac-like point is six-fold
degenerate and is formed by the accidental degeneracy of electric dipole
and magnetic dipole excitations, each with three degrees of freedom.
We found that 3D Dirac-like points at ~k = 0 can also be found in
simple cubic acoustic wave crystals. Different from the case in the
photonic system, the 3D Dirac-like point in acoustic wave system is
four-fold degenerate, and is formed by the accidental degeneracy of
dipole and monopole excitations. Using effective medium theory, this
acoustic wave system can also be described as a material which has
both effective mass density and reciprocal of bulk modulus equal to
zero at ωD. For both the photonic and phononic systems, a subset of
the bands has linear dispersions near the zone center, and they give
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rise to equi-frequency surfaces that are spheres with radii proportional
to (ω − ωD).

1. INTRODUCTION

Natural materials owe their optical properties to the properties of
the individual atoms/molecules as well as the lattice structure which
dictates how the atoms/molecules are arranged. As the optical
wavelength is typically a thousand times longer than the atomic lattice
constant, we can average the light propagation properties over the
atomic scale and describe the interaction between light and materials
by macroscopic electromagnetic parameters: the permittivity and
permeability. The permittivity can be either positive or negative,
while at higher frequencies, the relative permeability is almost equal
to 1 [1]. In 1968, Veselago proposed the concept of materials with
negative permittivity and permeability simultaneously [2] and various
intriguing electromagnetic wave propagation properties were predicted.
However, such materials do not exist in nature. It is only until 1999
that Pendry et al. proposed to use resonating conducting elements to
realize negative permeability [3], and the concept was soon realized
experimentally in a material with both negative effective permittivity
(εeff ) and effective permeability (µeff ) [4], and negative refraction was
successfully demonstrated as predicted. We now call these composite
materials “metamaterials”, and various types of metamaterials with
all kinds of effective permittivity (εeff ) and effective permeability
(µeff ) were designed and novel physical phenomena have been realized,
including negative refraction [4–8], imaging [9–14], cloaking [15–
21], illusion [22] and reversed Cherekov Radiation [23]. In short,
by realizing metamaterials with different effective permittivity and
permeability, peculiar wave guiding properties can be achieved and
the exploration of the parameter space of εeff and µeff is extending
mankind’s ability to control light and waves.

The two εeff and µeff axes in the parameter space are particular,
where the refractive index is equal to zero. In a homogeneous isotropic
material, a zero-refractive-index material can be either single-zero
(εeff = 0 or µeff = 0) or double-zero (εeff = µeff = 0) [24–39]. The
phase velocity of light in a zero-index material is much greater than the
speed of light and can even approach infinity. As a consequence, the
phase of light throughout a piece of zero-index material is essentially
a constant, independent of its shape. This unique property leads
to many intriguing phenomena and plausible applications, such as
tailoring the radiation phase pattern of arbitrary sources [33–35],
making wave guiding channels of arbitrarily shapes [24–32], and
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cloaking objects in waveguides [36–39]. However, it is very difficult
to realize zero-index materials in natural materials, let alone having
it at any frequency we want. Recently, the rapid development of
metamaterial has enabled the creation of single-zero-index materials by
using complex subwavelength resonant structures [30]. Nevertheless,
the design and fabrication procedures are complicated and absorption
is inevitable in the single-zero-index metamaterials, which typically
involve subwavelength metallic inclusions, and this would severely limit
its functionality at optical frequencies. Moreover, the group velocity
in a single-zero-index material is zero because it utilizes the band edge
of a band gap, and the impedance of a single-zero-index material is
either infinity or zero [35, 39]. These disadvantages can be avoided by
using double-zero-index materials which possess finite group velocity
and impedance.

It is straightforward to show that a dispersive homogenous
system with ε = µ = 0 has linear dispersions (Dirac cone) at
a particular frequency at ~k = 0, and the linear dispersions will
generate Dirac cones [40]. Many interesting physical properties
of graphene are consequences of the Dirac cone dispersion in its
electronic band structure [41–48]. It turns out that some classical
wave systems such as 2D photonic and phononic crystals also possess
Dirac cone dispersions [49–62]. Special transport properties such as
“Zitterbewegung” [61–63] and some interesting physical properties
such as the existence of non-trivial Berry phases [53–58] that originate
from the Dirac cone in electronic systems can also be observed in
classical wave Dirac cone systems. Most of the Dirac points, including
those in graphene [41–48] and two dimensional (2D) classical wave
systems [52–62], are found at the Brillouin zone boundary. It was
recently discovered that Dirac points can also be realized at the zone
center of 2D photonic [49] and phononic [50–51, 58] crystals. The
physical origins of these ~k = 0 Dirac-like cones are different from
the usual zone boundary Dirac cones. Whereas the zone boundary
Dirac cones are consequences of the lattice symmetry, the existence of
Dirac points at ~k = 0 requires some sort of accidental degeneracy.
Without additional degeneracy, the dispersion of a non-degenerate
band at ~k = 0 is always parabolic due to time reversal symmetry and
parabolic bands cannot generate Dirac cones. Zone center Dirac-like
cones are also accompanied by an extra flat band of states [49–51, 58],
which makes the physics different from that of zone boundary Dirac
cones. For example, the Berry phase enclosing a zone center Dirac-like
point is zero [58] while the Berry phase associated with the Dirac cone
in graphene is π [41–48]. In our previous paper, we found that a subset
of such photonic crystals behave as if they have effectively ε = 0 and
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µ = 0 at the Dirac-like point frequency [49], and the analogy can be
extended to acoustic [50] and elastic [51] waves. It is important to
note that the mapping of a ~k = 0 Dirac cone system to a double-zero
metamaterial is meaningful only if the accidental degeneracy originates
from the dipole and monopole degrees of freedom.

The notion of a Dirac “cone” is inherently a 2D concept. Recently,
Sakoda showed that it is possible to find three dimensional (3D) Dirac-
like points at the Brillouin zone center of cubic electromagnetic systems
with Oh symmetry [64]. A 3D Dirac-like point can be created by the
accidental degeneracy of a non-degenerate A1g mode, and a triply-
degenerate T1u mode in 3D photonic systems [64]. The concept of
Dirac point is hence extended from 2D to 3D. To make our discussion
more straightforward, we will limit ourselves to isotropic systems in
the following. The equi-frequency surfaces corresponding to 2D Dirac
cones are elements of a set of circles whose radii decrease linearly and
approach zero both from above and below the Dirac point and the
Dirac point is the frequency at which the equi-frequency circle has
zero radius. To obtain a Dirac cone, the dispersion must be linear near
the zone center which requires accidental degeneracy. When concept
is extended from 2D to 3D, the equi-frequency trajectories change
from circles in 2D to spheres in 3D. Near the “Dirac point” in 3D
systems, the radii of equi-frequency spheres are linearly proportional
to (ω − ωD) where ωD is the Dirac point frequency, and the Dirac point
is the frequency at which the equi-frequency sphere becomes a point.
The necessary condition is again linear dispersions near the zone center
which requires accidental degeneracy.

While Sakoda has already shown mathematically that it is possible
to extend the Dirac point concept to 3D and has shown using group
theoretic method that such 3D Dirac-like point can be obtained using
a singly-degenerate A1g mode and a triply-degenerate T1u mode in a
simple cubic system [64], there is still more work to do. Firstly, we
will explore whether some of these 3D Dirac-like point systems can be
mapped to a system with εeff = µeff = 0 at the Dirac-like point, as in
the case of 2D systems [49]. In addition, we want to explore whether
there are simple physical systems that can realize such system with
accidental degeneracy. For realization in physical systems, we note that
the A1g mode correspond to the monopolar excitations. This poses
a challenge in practice because monopoles are difficult to construct
in 3D photonic systems. The lowest order excitations are typically
dipoles. We will show that the accidental degeneracy of 3D dipoles
and monopoles can be realized instead in acoustic wave systems, and
thereby obtaining Dirac-like points in 3D for acoustic crystals. For
electromagnetic waves in 3D, it is more challenging but we will show
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that there is another route to obtain a Dirac-like point. Using group
theoretic method and by giving a specific example, we will show that
3D Dirac-like points can be obtained if electric and magnetic dipole
excitations can be arranged to be accidentally degenerate at ~k = 0.

More specifically, we demonstrate that core-shell spheres arranged
in a simple cubic lattice exhibit a 3D Dirac-like point at the Γ point.
The Dirac-like point consists of six-fold-degenerate states, formed by
the triply-degenerate T1u and T1g modes. The T1u and T1g modes
correspond to magnetic and electric dipoles respectively. Four of the
six-fold-degenerate states have linear dispersions near the Dirac-like
point, while the other two are quadratic. This Dirac-like point is
different from the scheme proposed in Ref. [64], which is a four-fold-
degenerate state. For acoustic wave systems, we found that a simple
cubic system composing of rubber spheres embedded in the water can
give a 3D Dirac-like point at the Γ point in the band structure and the
Dirac-like point is formed by a four-fold-degenerate state. This four-
fold-degenerate state comprises a non-degenerate monopole A1g mode
and a triply-degenerate dipole T1u mode, which falls into the class of
3D Dirac-like point proposed in Ref. [64]. For the 3D acoustic wave
system, the tight-binding method shown in Ref. [64] can be applied
directly to prove the existence of the Dirac-like point. The 3D Dirac-
like point in photonic systems has six degrees of freedom, and as such,
the proof of the existence of the Dirac-like point is more tedious and the
details will be shown in the appendix. Using effective medium theory,
we will show that the structures with 3D Dirac-like point in photonic
and phononic systems can be described as isotropic zero-refractive-
index materials at the Dirac-like point frequency, in the sense that all
components of the effective permittivity and permeability are equal
to zero in the photonic system, and the effective mass density and
reciprocal of bulk modulus are equal to zero in the phononic system.

The paper is organized as following. In Section 2, we will introduce
the Dirac-like point in 2D photonic crystal. There is a triple degenerate
state at the Γ point in the band structure. This triple degenerate
state can be described by the linear combination of monopole and
dipoles. Applying the effective medium theory, we can map the
2D photonic crystal to a homogenous zero-refractive-index material
with both permittivity and permeability equal to zero simultaneously.
In Sections 3 and 4, we will extend the concept of 2D Dirac-like
point to 3D both in photonic and phononic systems. In photonic
system, the Dirac-like point relates to a six-fold degenerate state which
corresponding to electric and magnetic dipoles, while in phononic
system, it relates to a four-fold degenerate state which corresponding
to monopole and dipoles. Both the 3D photonic and phononic crystals
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with 3D Dirac-like point at the zone center can be described using the
effective medium theory as a homogeneous material with permittivity
and permeability equal to zero simultaneously in photonic system
and with mass density and reciprocal of bulk modulus equal to zero
simultaneously in phononic system. At last, we will give a summary.

2. 2D DIRAC-LIKE POINT IN PHOTONIC SYSTEM

Let us first consider a 2D photonic crystal that exhibits a Dirac-like
point at the Γ point [49]. The band structure of a 2D photonic crystal
consisting of a square lattice of dielectric cylinders for the transverse-
magnetic (TM) polarization, with the electric field along the cylinder
axis, is shown in Fig. 1(a) [49]. The radius and relative permittivity of
the cylinders are set as R = 0.2a and εr = 12.5, where a is the lattice
constant. There is a triply-degeneracy state at the Γ point, which
comprises of two linear bands and another quadratic band intersecting
at the same frequency. The quadratic band is nearly dispersionless near
the zone center. We note that the triple degeneracy is “accidental”,
meaning that it is not a consequence of lattice symmetry. If the systems
parameters are changed (e.g., a different radius of the cylinder), the
triple degenerate state will split into a doublet and a singlet. To
visualize the Dirac-like cones, the dispersion surfaces are plotted in
Fig. 1(c). There are clearly two touching cones at the Γ point
(purple) and a flat sheet (green) crossing the Dirac-like point. In
order to analyze the underlying physics of the triple degenerate state,
we calculate the field patterns of the eigenmodes near the Dirac-like
point with a small k along ΓX direction shown in Figs. 1(d)–(f).
Figs. 1(d) and 1(e) show that the linear bands are linear combinations
of the monopole and transverse dipole with its magnetic field polarized
perpendicular to the wave vector, while the flat band corresponds to
quasi-longitudinal dipole excitations with its magnetic field polarized
parallel to the wave vector (shown in Fig. 1(f)). The existence of
linear bands at the Γ point can be proved by using multiple scattering
theory [49], tight-binding method [64–67] or k.p perturbation [58, 68].
It was shown that if the band dispersions in a 2D photonic crystal can
be described by monopole and dipole excitations, an effective medium
theory [69] can be applied to extract effective constitutive parameters
of this 2D photonic crystal. The effective permittivity (εeff ) and
permeability (µeff ) as functions of frequency are shown in Fig. 1(b).
We can see that εeff and µeff indeed intersect at zero at the Dirac-like
point frequency.

In order to demonstrate that the photonic crystal with a band
dispersion shown in Fig. 1(a) does behave as if εeff (ωD) = µeff (ωD) = 0
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at the Dirac-like point frequency, numerical simulations and microwave
experiments were carried out [49]. Instead of using ε = 12.5, we chose
the alumina rods with ε = 8.8 for the experiment as these alumina
rods are readily available. Fig. 2(a) shows that the measured field
distributions of an incident plane wave illuminating from the left side
onto a photonic crystal with a 40 ∗ 40mm metallic obstacle imbedded
inside. The exit waves on the right side preserve its plane wave front
with little distortion as if the obstacle was not there. For comparison,
we show the numerical simulated field distributions for a homogenous
ε = µ = 0 medium with a thin layer of air between the homogenous
ε = µ = 0 medium and the metallic block (shown in Fig. 2(b)). The
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Figure 1. (a) The band structure for a 2D photonic crystal consisting
of dielectric cylinders with radius R = 0.2a, relative permittivity
ε = 12.5 and permeability µ = 1. Here, a is the lattice constant.
(b) The effective permittivity εeff (pink dashed line) and permeability
µeff (blue solid line) as a function of frequency for the 2D photonic
crystal. Note that εeff = µeff = 0 at the Dirac-like point. (c) Three-
dimensional dispersion surfaces near the Dirac-like point frequency of
the band structure shown in (a), showing the relationship between the
frequency and wave vectors (kx and ky). (d)–(f) The field patterns of
the eigenmodes near the Dirac-like point with a very small k along ΓX
direction. The color patterns show the Ez fileds and the vector fields
show H fields. (d) The real part of Ez and the imaginary part of H
at the frequency 0.527c/a. (e) The imaginary part of the Ez and the
real part of Hat the frequency 0.527c/a. (f) The real part of Ez and
the imaginary part of H at the frequency 0.541c/a.
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Figure 2. Simulation and microwave experiment to illustrate
the “cloaking” effect of a zero-index medium. (a) The microwave
experimental Ez field distributions observed at 10.3 GHz with a
photonic crystal containing a 40 ∗ 40mm metallic obstacle (green)
embedded in it. The incident plane wave comes from the left. The
photonic crystal is a square array of alumina cylinders (each rod in
yellow) with relative permittivity ε = 8.8 and permeability µ = 1.
(b) Simulated Ez field distributions for a hypothetical homogenous
ε = µ = 0 medium (blue) with a thin layer of air (between the organge
boundary and the metallic block (green)) between the homogenous
ε = µ = 0 medium and the metallic block (green).

exit fields still keep its plane wave front with little distortion. The field
distributions between the experiment and simulation are consistent
with each other.

3. 3D DIRAC-LIKE POINT IN PHOTONIC SYSTEM

After introducing the 2D Dirac-like point in photonic system, we will
attempt to extend the concept of 2D Dirac-like to 3D. It is well known
that photonic bands have quadratic dispersions at the Γ point as a
consequence of time reversal symmetry. In order to illustrate the
typical dispersion of a simple cubic lattice near the zone center, we
calculate the photonic band structure of dielectric spheres arranged
in a simple cubic lattice, which is shown in Fig. 3. The permittivity
and permeability of the spheres are chosen to be ε = 12 and µ = 1.
The radius is R = 0.3a, with a being the lattice constant. In the
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frequency range of interest, the bands are derived from electric and
magnetic dipolar excitations. There are two triply-degenerate states
at Γ point and these states have different frequencies. The lower bands
correspond to magnetic dipole modes which are labeled as T1u at ~k = 0,
and the higher bands are the electric dipole modes labeled as T1g at
~k = 0 [70]. Both sets of the bands have quadratic dispersions at the
Γ point as expected. We cannot obtain linear dispersion at Γ point
unless there is accidental degeneracy. However, in photonic crystals
composing of the dielectric spheres arranged in a simple cubic lattice,
it is very difficult, if not impossible, to make the T1u and T1g modes
touch each other at the same frequency through tuning the filling ratio
or permittivity of the spheres. To achieve accidental degeneracy, we
need one more degree of freedom to tune the frequencies of these two
modes. For that purpose, we employ a core-shell structure. The inset
in Fig. 4(a) is the illustration of the simple cubic unit cell. The core
(orange color in the figure) is a perfect electric conductor, the radius of
which is R1 = 0.102a. The shell (gray color in the figure) is dielectric
with ε = 12 and µ = 1. The outer radius of the shell is R2 = 0.3a.
The photonic band structure of these core-shell spheres arranged in a
simple cubic lattice is shown in Fig. 4(a). With the extra degree of
freedom allowed in a core-shell configuration, it is not difficult to find
parameters so that the T1u and T1g modes touch each other at Γ point.
For the system shown in Fig. 4, the accidental degeneracy occurs at
the frequency fD = 0.523c/a. As the electric and magnetic dipoles are

Figure 3. The photonic band structure of dielectric spheres arranged
in a simple cubic lattice. The permittivity (ε) and permeability (µ)
of the sphere are ε = 12, µ = 1. The radius of it is R = 0.3a. Here,
a is the lattice constant. We note that the triply degenerate T1g and
T1u modes have different frequencies and the dispersions are quadratic
near the zone center.
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Figure 4. (a) The band structure of three dimensional core-shell
photonic crystals with a simple cubic lattice. The inset is an
illustration of the simple cubic unit cell. The cores (orange color)
are made of perfect electric conductors, with radii of R1 = 0.102a.
The permittivity (ε) and permeability (µ) of the dielectric shell (gray
color) are ε = 12, µ = 1. The radius of the outer shell is R2 = 0.3a.
Here, a is the lattice constant. (b) The effective permittivity (εeff )
and permeability (µeff ) as a function of frequency for this core-shell
photonic crystal obtained using effective medium theory. The blue
dash line marks the frequency of the Dirac-like point (fD = 0.523c/a)
in the band structure. This coincides with the frequency at which
εeff = µeff = 0. In this case, the T1g and T1u modes are accidentally
degenerate, giving rise to linear dispersions near the zone center for
four of the bands.

each three-fold degenerate at ~k = 0, the accidental degeneracy gives
rise to a six-fold degenerate state at Γ point. Four bands have linear
dispersions near the Γ point, the other two bands are relatively flat.

To visualize the accidental degeneracy further, we calculate the
band structure of the core-shell spheres with different radii of the
cores. The outer radius of the shell is kept constant (R2 = 0.3a).
The photonic band structures for R1 = 0.08a and R1 = 0.12a are
shown in Figs. 5(a) and 5(b), respectively. The six-fold degenerate
state (shown in Fig. 4(a)) breaks into two triply-degenerate states.
When R1 is smaller than 0.102a, the frequency of T1u mode is lower
than that of T1g mode. If R1 is bigger than 0.102a, T1u mode becomes
the higher frequency mode. It is quite obvious that by changing the
radius of the core, the T1u and T1g modes will cross each other at the
same frequency, which is consistent with the result shown in Fig. 4(a).
Fig. 5 also shows that unless T1u and T1g modes coincide in frequency,
the dispersion remains quadratic as in the case of simple dielectric
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spheres shown in Fig. 3.
To prove the existence of the linear dispersion near the Γ point,

we extend the method introduced by Sakoda in Ref. [64] to the more
complicated case of six-fold degeneracy. We will use the same notation
introduced in Ref. [64]. The secular equation of this 3D accidental-
degeneracy-induced Dirac point (ADIDP) is:

∣∣∣∣B− ω2
k

c2
I
∣∣∣∣= 0. (1)

Here, I is the unit matrix. ωk is the eigen frequency. The elements
(Bij) of B is defined by:

Bij =
∑

lmn

eia(kxl+kym+kzn)L
(ij)
lmn (2)

Here, l, m, n are integers, kx, ky, kz the Cartesian components of the
Bloch wave vector, and L

(ij)
lmn the “electromagnetic transfer integrals”

in 3D. By substituting the expressions of L
(ij)
lmn into Eq. (2), we can

obtain the formulas of Bij , which allows us to solve Eq. (1). The
detailed derivations of the secular equation, L

(ij)
lmn, and Bij are shown

in the appendix. After some tedious calculations, we can solve Eq. (1)

(b)(a)

Figure 5. The band structure of three dimensional core-shell photonic
crystals with simple cubic lattice for different radii of the cores (R1).
The permittivity (ε) and permeability (µ) of the shell are ε = 12, µ = 1.
The radius of it is R2 = 0.3a. The cores are perfect electric conductors,
the radii of the cores are (a) R1 = 0.08a and (b) R1 = 0.12a. Here, a
is the lattice constant.
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Figure 6. The electric fields of the eigenstates at the Dirac-like point
frequency. The arrows show the directions of the electric field, the sizes
of the arrows are proportional to the field amplitude. (a) The electric
field in the yz plane (x = 0 plane). The field pattern shows that the
eigenmode is a magnetic dipole pointing along the x direction. (b) The
electric field in the xy plane (z = 0 plane), implying an electric dipole
excitation in x direction.

to obtain the dispersion of the 3D ADIDP.

ωk =





ωΓ+|M3| ac2k/ωΓ−
(

1
12

(
M ′

1 + 2M ′′
1+M ′

2+2M ′′
2

)
/ωΓ

− 1
2ω3

Γ

c2 |M3|2
)

a2c2k
2 (double roots)

ωΓ−|M3| ac2k/ωΓ−
(

1
12

(
M ′

1 + 2M ′′
1 + M ′

2 + 2M ′′
2

)
/ωΓ

− 1
2ω3

Γ

c2 |M3|2
)

a2c2k2 (double roots)

ωΓ − 1
12

(
M ′

1+2M ′′
1+M ′

2+2M ′′
2

)
a2c2k2/ωΓ (double roots)

(3)

Eq. (3) implies that in the band structure four bands have linear
dispersions near the zone center, and the other two are quadratic in k

in the lowest order. The dispersions are isotropic near ~k = 0. This is
consistent with the numerical results shown in the band structure in
Fig. 4(a). The equi-frequency surfaces for the linear bands are spheres
with radii proportional to the (ω − ωD).

In order to understand the underlying physics of this 3D ADIDP,
we calculate the electric field patterns of the eigenstates at the Dirac-
like point frequency (0.523c/a). Fig. 6(a) demonstrates the electric
field pattern in the yz plane (x = 0 plane). The arrows show
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(a)

(b)

(c)

Figure 7. Finite-difference time-domain simulations showing that
waves can go through the core-shell photonic crystal with very small
distortions of wavefront, as expected from a εeff = µeff = 0 material.
(a) The super cell used for the simulations. Periodical boundary
conditions are applied to the side walls (xz, and yz planes). Perfectly
matched layer boundary conditions are applied at the top and bottom
walls (xy planes). There is only one unit cell in the x direction and
there are Ny unit cells in the y direction. The thickness of the sample
has Nz unit cells. In the simulations, Ny = 4, Nz = 6. The core-
shell spheres are arranged from −1.5a to 1.5a and −2.5a to 2.5a along
y and z directions. The plane waves are incident from the negative
z direction (as indicated by the pink arrows) with the electric field
polarized along x direction (blue arrows). (b) the electric field pattern
in the xz plane (y = 0 plane), and (c) the electric field pattern in the
yz plane (x = 0 plane).

the directions of the electric field, the sizes of the arrows show the
amplitude of the field. The field pattern shows that this eigenstate
is a magnetic dipole pointing along the x direction. Fig. 6(b) shows
the electric field pattern in the xy plane (z = 0 plane), which looks
like an electric dipole. The eigenstates of the other four modes at the
Dirac-like point frequency correspond to magnetic and electric dipole
excitations along y and z directions (not shown here). Therefore, the
3D ADIDP can be described by electric and magnetic dipole excitations
along x, y, and z directions.

We have shown previously that in 2D photonic crystals, Dirac-like
points that are derived from the accidentally degeneracy of monopole
and dipole excitations can be mapped to a zero-refractive-index at that
frequency [49]. Is it possible to describe the Dirac-like point physics
in 3D with effective medium theory? We apply the effective medium
theory shown in Ref. [69] to calculate the effective medium of this 3D
ADIDP. The effective permittivity (εeff ) and permeability (µeff ) as a
function of frequency are shown in Fig. 4(b). At the 3D Dirac-like
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point frequency, effective medium theory found that εeff = µeff = 0.
That is to say, the core-shell simple cubic structure will behave as if
it is an isotropic system with εeff = µeff = 0 at the Dirac-like point
frequency. This is different from the case of 2D Dirac-like cone systems
which are anisotropic and as such, can only give zero refractive index
only for one polarization.

Zero-index material has many interesting wave manipulating prop-
erties [24–39]. We perform finite-difference time-domain simulations to
see whether our core-shell structure has properties similar to a zero-
index material. Fig. 7 shows a snapshot of field patterns of incident
plane waves going through the core-shell photonic crystal. Due to the
limitation of computation resources, we use a relatively small super
cell to do the simulations (shown in Fig. 7(a)). The side walls (xz,
and yz planes) have periodical boundary conditions. There is only
one unit cell in the x direction, while there are Ny unit cells in the y
direction. Perfectly matched layer boundary conditions are imposed
on the top and bottom walls (xy planes). The sample is Nz unit cells
thick in the z direction. In our simulations shown, we use Ny = 4,
Nz = 6. The core-shell spheres are arranged from −1.5a to 1.5a and
−2.5a to 2.5a in the y and z directions. The incident plane waves come
in from the negative z direction as indicated by the pink arrows in the
figure with the polarization of the electric field along the x direction
(blue arrows). In Fig. 7(b), the electric field pattern in the xz plane
(y = 0 plane) preserves its plane wave front without distortion. In yz
plane (x = 0 plane), the electric field pattern also preserves its plane
wave front (shown in Fig. 7(c)). Examining the field patterns inside
the core-shell photonic crystal (shown in Figs. 7(b) and 7(c)), we can
find little phase inside the photonic crystal, which is expected if the
material has εeff = µeff = 0.

4. 3D DIRAC-LIKE POINT IN PHONONIC SYSTEM

From the previous discussions, we see that 3D ADIDP in photonic
systems can be achieved with the accidental degeneracy of electric and
magnetic dipoles resulting in a six-fold degenerate Dirac-like point at
the zone center. We are going to show below that the scheme proposed
in Ref. [64], using A1g (one-fold) and T1u modes (three-fold) to get 3D
Dirac-like point, can actually be employed in acoustic wave systems
rather than in photonic systems. We calculate the band structure of
3D simple cubic lattice acoustic crystals consisting of rubber spheres
in water. The radius of rubber is R = 0.255a, with a being the lattice
constant. The density of rubber is taken to be ρ = 1.3×103 kg/m3, and
that of water is ρ0 = 1.0× 103 kg/m3. The Lame constant in rubber is
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(b)(a)

Figure 8. (a) The band structure of three dimensional simple cubic
acoustic crystals consisting of rubber spheres (radius R = 0.255a) in
water. Here, a is the lattice constant. The density of rubber is taken
to be ρ = 1.3× 103 kg/m3, and that of water is ρ0 = 1.0× 103 kg/m3.
The Lame constant in rubber is κ = 1.17 × 108 N/m2 and for water
κ0 = 2.22 × 109 N/m2. (b) The effective mass density (ρeff ) and
reciprocal of bulk modulus (1/κeff ) as a function of frequency obtained
using effective medium theory for this simple cubic phononic crystal.
The blue dash line marks the frequency of the Dirac-like point (fD =
0.418v0/a) in the band structure which coincides with the frequency
at which ρeff = 1/κeff = 0 in the effective medium.

(a) (b)

Figure 9. The band structure of three dimensional acoustic crystals
arranged in a simple cubic lattice for different radii (R). R = 0.245a for
Fig. 9(a), and R = 0.265a for Fig. 9(b). Here, a is the lattice constant.
The density of rubber is taken to be ρ = 1.3 × 103 kg/m3, and that
of water is ρ0 = 1.0 × 103 kg/m3. The Lame constant in rubber is
κ = 1.17× 108 N/m2 and for water κ0 = 2.22× 109 N/m2.



178 Chan et al.

(a) (b)
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Figure 10. The displacement field patterns of the eigenstates at the
Dirac-like point frequency (fD = 0.418v0/a). (a) Implies a monopolar.
(b) Implies a dipolar.

taken to be κ = 1.17× 108 N/m2 and for water κ0 = 2.22× 109 N/m2.
For simplicity, we have ignored the shear wave within the rubber
spheres due to the high velocity contrast between the rubber and water,
and the main features will stay the same if we also include the shear
wave within the spheres [71]. Fig. 8(a) shows a four-fold degenerate
state at the Γ point at a frequency fD = 0.418v0/a. Here, v0 is the
acoustic velocity of water. Two bands have linear dispersions near
~k = 0, and the other two have quadratic dispersions. For the linear
bands, the equi-frequency surfaces are spheres with radii proportional
to (ω − ωD). This Dirac-like point is also induced by accidental
degeneracy. However, it is obviously different from the 3D ADIDP
in the photonic system, which is six-fold degenerate. To visualize
the accidental degeneracy further, we calculate the band structure
of the acoustic crystal with different radii (shown in Fig. 9) of the
rubber spheres. The four-fold degenerate state now breaks into a
singly-degenerate state (A1g mode) and a triply-degenerate state (T1u

mode), both with zero group velocity at the zone center. When the
radius is smaller than 0.255a (the radius satisfies the 3D Dirac-like
point condition), the frequency of the singly-degenerate state is lower
than the triply-degenerate state (Fig. 9(a)). If the radius is bigger
than 0.255a, the ordering reverses (Fig. 9(b)). The ordering of the
states for spheres with different radii implies that at certain radius,
these two modes will touch each other at the same frequency, which
is consistent with the results shown in Fig. 8(a). To understand the
underlying physics, we calculate the displacement field pattern of the
eigenstates at the Dirac-like point frequency shown in Fig. 10. The
displacement patterns in Figs. 10(a) and 10(b) are consistent with
a monopole and dipole excitation, respectively. The monopole and
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dipole modes correspond to the A1g and T1u modes. The existence of
the 3D ADIDP in this acoustic crystal with four degrees of freedom
can be proved with the method shown in Ref. [64].

Using effective medium theory [72], we can calculate the effective
mass density (ρeff ) and reciprocal of bulk modulus (1/κeff ) of this
acoustic crystal. The effective mass density and reciprocal of bulk
modulus are simultaneously equal to zero at the frequency 0.418v0/a.
This frequency is the same as the Dirac-like point frequency in the band
structure. We note that in 2D geometries, acoustic systems with Dirac-
like point derived from the accidental degeneracy of monopole and
dipole excitations can be mapped to a zero-index effective medium [50].
The results here show that the same analogy exists for Dirac-like points
in 3D derived from A1g and T1u degeneracy.

5. SUMMARY

In summary, we show that a Dirac-like point formed by a triply-
degenerate state can exist at the Γ point in 2D photonic crystal. Such
triply-degenerate states are consequences of accidental degeneracy,
which can be achieved by tuning system parameters. For the triply-
degenerate state are derived from monopole and dipole excitations,
the system can be mapped to εeff = µeff = 0 material through
effective medium theory. We then extend the 2D Dirac-like point
concept to 3D. We proposed physically realizable structures to obtain
3D ADIDP in both photonic and phononic systems. The Dirac-like
point in 3D photonic systems is a six-fold degenerate state, formed by
the accidental degeneracy of electric and magnetic dipoles excitations,
while in the acoustic wave system it is a four-fold degenerate state,
formed by the monopole and dipole excitations. In the photonic case,
we find that we can use core-shell systems to achieve the accidental
degeneracy. Using effective medium theories, we can map these
structures to a material with effective permittivity and permeability
simultaneously equal to zero in the photonic system, and with effective
mass density and reciprocal of bulk modulus simultaneously equal to
zero in the phononic system. These systems are platforms that enable
us to extend the notion of “Dirac points” from 2D to 3D. As the density
of states near the 3D Dirac points are different from those near 2D
Dirac points, new transport properties may emerge from those systems.
These would be interesting topics for further studies. In 2D systems
with Dirac-like cones at the zone center, only some components in the
constitutive relationship are zero. In 3D, all components are zero at the
Dirac-like point. As “zero-index” effective media, they are probably
more interesting than their 2D counterparts.
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APPENDIX A.

In this appendix, we extend the method introduced by Sakoda in
Ref. [64] to show the existence of the 3D ADIDP in the simple
cubic photonic crystal with core-shell spheres. We will use the same
notations as Ref. [64]. The 3D ADIDP is a six-fold degenerate state,
comprising the T1u and T1g modes. The eigen fields of the 3D ADIDP
near Γ point ( ~Hk (~r)) can be described by the linear combination of
the basis functions with the same symmetry as the T1u and T1g modes.

~Hk (~r) =
1
V

∑

l,m,n

ei~k·~rlmn

6∑

i=1

Ai
~H(i)(~r − ~rlmn) (A1)

Here, V is the volume of the unit cell, ~rlmn = l

(
a
0
0

)
+ m

( 0
a
0

)
+

n

( 0
0
a

)
is a lattice vector of the simple cubic structure, and l, m, n

are integer. Ai is the coefficient of the linear combination. ~k is Bloch
wave vector. ~H(i) (~r) is the basis function comprising T1u or T1g modes.
The indices i = 1, 2, 3 represent the T1u mode, and i = 4, 5, 6 for T1g

mode. From the Maxwell equation, the eigenvalue equation is given
by:

L ~Hk (~r) =
ω2

k

c2
~Hk (~r) (A2)

Here, L = ∇ × ( 1
ε(~r)∇×). ε(~r) is the permittivity. The eigen-

frequency is given by ωk. The electromagnetic transfer integral in
three dimensions can be defined by:

L
(ij)
lmn =

1
V

∫
d~r ~H(i)∗ (~r) · L ~H(j) (~r − ~rlmn) (A3)

Using symmetry, we can obtain the functional form of L
(ij)
lmn through

Eq. (A3). In this process, we will use the symmetry operator to operate
onto the eigen fields ( ~H(i) (~r)) of T1u and T1g modes.
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The matrix representations of T1u mode are already shown in
Ref. [64]. For ease of reference, we write down some of them again
in the following.

σx :

( −1 0 0
0 1 0
0 0 1

)
; σy :

( 1 0 0
0 −1 0
0 0 1

)
; σz :

( 1 0 0
0 1 0
0 0 −1

)
;

C4x :

( 1 0 0
0 0 1
0 −1 0

)
; C4y :

( 0 0 −1
0 1 0
1 0 0

)
; C4z :

( 0 1 0
−1 0 0
0 0 1

)
;

C−1
4x :

( 1 0 0
0 0 −1
0 1 0

)
; C−1

4y :

( 0 0 1
0 1 0
−1 0 0

)
; C−1

4z :

( 0 −1 0
1 0 0
0 0 1

)
;

C3(111) :

( 0 1 0
0 0 1
1 0 0

)
; C−1

3(111) :

( 0 0 1
1 0 0
0 1 0

)
;

The polynomial representation of T1g mode is given by {yz(y2 − z2),
zx(z2 − x2), xy(x2 − y2)} [68]. The matrix representations are shown
below.

σx :

( 1 0 0
0 −1 0
0 0 −1

)
; σy :

( −1 0 0
0 1 0
0 0 −1

)
; σz :

( −1 0 0
0 −1 0
0 0 1

)
;

C4x :

( 1 0 0
0 0 1
0 −1 0

)
; C4y :

( 0 0 −1
0 1 0
1 0 0

)
; C4z :

( 0 1 0
−1 0 0
0 0 1

)
;

C−1
4x :

( 1 0 0
0 0 −1
0 1 0

)
; C−1

4y :

( 0 0 1
0 1 0
−1 0 0

)
; C−1

4z :

( 0 −1 0
1 0 0
0 0 1

)
;

C3(111) :

( 0 1 0
0 0 1
1 0 0

)
;C−1

3(111) :

( 0 0 1
1 0 0
0 1 0

)
;

According to Eq. (A3), we calculate L
(ij)
lmn for T1u mode [64].

L
(11)
000 = L

(22)
000 = L

(33)
000 =

ω2
1

c2
+ M1

L
(11)
±1,00 = L

(22)
0,±1,0 = L

(33)
00,±1 = M ′

1

L
(11)
0,±1,0 = L

(11)
00,±1 = L

(22)
±1,00 = L

(22)
00,±1 = L

(33)
±1,00 = L

(33)
0,±1,0 = M ′′

1

L
(12)
000 = L

(21)
000 = L

(13)
000 = L

(31)
000 = L

(23)
000 = L

(32)
000 = 0
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L
(12)
±1,00 = L

(12)
0,±1,0 = L

(12)
00,±1 = L

(21)
±1,00 = L

(21)
0,±1,0 = L

(21)
00,±1 = L

(13)
±1,00

= L
(13)
0,±1,0 = L

(13)
00,±1 = L

(31)
±1,00 = L

(31)
0,±1,0 = L

(31)
00,±1 = L

(23)
±1,00

= L
(23)
0,±1,0 = L

(23)
00,±1 = L

(32)
±1,00 = L

(32)
0,±1,0 = L

(32)
00,±1 = 0

Here, ω1 is the eigen frequency of T1u mode.
Next, we give the expression for L

(ij)
lmn for T1g mode. The results

are very similar to the T1u mode.

L
(44)
000 = L

(55)
000 = L

(66)
000 =

ω2
2

c2
+ M2

L
(44)
±1,00 = L

(55)
0,±1,0 = L

(66)
00,±1 = M ′

2

L
(44)
0,±1,0 = L

(44)
00,±1 = L

(55)
±1,00 = L

(55)
00,±1 = L

(66)
±1,00 = L

(66)
0,±1,0 = M ′′

2

L
(45)
000 = L

(54)
000 = L

(46)
000 = L

(64)
000 = L

(56)
000 = L

(65)
000 = 0

L
(45)
±1,00 = L

(45)
0,±1,0 = L

(45)
00,±1 = L

(54)
±1,00 = L

(54)
0,±1,0 = L

(54)
00,±1

=L
(46)
±1,00 =L

(46)
0,±1,0=L

(46)
00,±1=L

(64)
±1,00=L

(64)
0,±1,0=L

(64)
00,±1=L

(56)
±1,00

= L
(56)
0,±1,0 = L

(56)
00,±1 = L

(65)
±1,00 = L

(65)
0,±1,0 = L

(65)
00,±1 = 0

Here, ω2 is the eigen frequency of T1g mode.
At last, we should consider the interaction terms between T1u and

T1g modes. The results are shown in the following.

±L
(15)
00,±1 =±L

(16)
0,∓1,0 = ±L

(24)
00,∓1 = ±L

(26)
±1,00 =±L

(34)
0,±1,0 =±L

(35)
∓1,00 =M3

Using the relation L
(ij)
lmn = L

(ji)∗
−l,−m,−n, we can obtain:

±L
(51)
00,∓1 = ±L

(61)
0,±1,0 = ±L

(42)
00,±1 = ±L

(62)
∓1,00 =±L

(43)
0,∓1,0 =±L

(53)
±1,00 =M∗

3

M∗
3 is the conjugate of M3. The other interaction terms are equal to

zero. The secular equation of Eq. (A2) is :
∣∣∣∣B− ω2

k

c2
I
∣∣∣∣= 0. (A4)

Here, I is the unit matrix. The elements (Bij) of B is defined by:

Bij =
∑

lmn

eia(kxl+kym+kzn)L
(ij)
lmn

To keep the mathematics manageable, we only consider nearest
neighbor hopping. By substituting the expressions of L

(ij)
lmn into the
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above equation, we obtain the expressions of Bij .

B11 =
ω2

1

c2
+ M1 + 2M ′

1 cos (kxa) + 2M ′′
1 [cos(kya) + cos (kza)]

B15 = 2iM3 sin (kza)
B16 = −2iM3 sin (kya)

B22 =
ω2

1

c2
+ M1 + 2M ′

1 cos (kya) + 2M ′′
1 [cos(kza) + cos (kxa)]

B24 = −2iM3 sin (kza)
B26 = 2iM3 sin (kxa)

B33 =
ω2

1

c2
+ M1 + 2M ′

1 cos (kza) + 2M ′′
1 [cos(kxa) + cos (kya)]

B34 = 2iM3 sin (kya)
B35 = −2iM3 sin (kxa)
B42 = 2iM∗

3 sin (kza)
B43 = −2iM∗

3 sin (kya)

B44 =
ω2

2

c2
+ M2 + 2M ′

2 cos (kxa) + 2M ′′
2 [cos(kya) + cos (kza)]

B51 = −2iM∗
3 sin (kza)

B53 = 2iM∗
3 sin (kxa)

B55 =
ω2

2

c2
+ M2 + 2M ′

2 cos (kya) + 2M ′′
2 [cos(kza) + cos (kxa)]

B61 = 2iM∗
3 sin (kya)

B62 = −2iM∗
3 sin (kxa)

B66 =
ω2

2

c2
+ M2 + 2M ′

2 cos (kza) + 2M ′′
2 [cos(kxa) + cos (kya)]

B12 = B13 = B14 = B21 = B23 = B25 = B31 = B32 = B36 = B41

= B45 = B46 = B52 = B54 = B56 = B63 = B64 = B65 = 0
Based on Eq. (A4), we use the notations

ξ =
ω2

k

c2
, ξ1 =

ω2
1

c2
, ξ2 =

ω2
2

c2

Eq. (A4) is reduced to:
ξ6 + b5ξ

5 + b4ξ
4 + b3ξ

3 + b2ξ
2 + b1ξ + b0 = 0 (A5)

At Γ point of the Brillouin zone, the solutions of Eq. (A5) are:

ξ =

{
ξ1 + M1 + 2M ′

1 + 4M ′′
1 = ξ

(1)
Γ (triple roots)

ξ2 + M2 + 2M ′
2 + 4M ′′

2 = ξ
(2)
Γ (triple roots)
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If we change the form of ξ to η with the relation:

η = ξ +
b5

6
(A6)

Therefore, Eq. (A5) can be changed to:

η6 + pη4 + qη3 + rη2 + sη + t = 0 (A7)

Here,

p = b4 − 5
12

b2
5

q = b3 −
(

5
54

b3
5 +

2
3
b5p

)

r = b2 −
(

5
432

b4
5 +

1
6
b2
5p +

1
2
b5q

)

s = b1 −
(

1
1296

b5
5 +

1
54

b3
5p +

1
12

b2
5q +

1
3
b5r

)

t = b0 −
(

1
46656

b6
5 +

1
1296

b4
5p +

1
216

b3
5q +

1
36

b2
5r +

1
6
b5s

)

To evaluate the ~k dependence of the eigen value equation around Γ
point, we expand the parameters p, q, r, s, t in the second, third,
fourth, fifth and sixth order of kx, ky, kz, respectively.

For the accidental degeneracy of the T1u and T1g modes at Γ point,

ξ
(1)
Γ = ξ

(2)
Γ = ξΓ

Through very cumbersome calculations, we can obtain:

p = −8 |M3|2 k2a2 r = 16 |M3|4 k4a4 q = s = t = 0

where k =
√

k2
x + k2

y + k2
z .

Since b5 = −6ξΓ + (M ′
1 + 2M ′′

1 + M ′
2 + 2M ′′

2) k2a2.
The solutions of Eq. (A5) are:

ξ=





ξΓ+2 |M3| ka− 1
6

(
M ′

1+2M ′′
1+M ′

2+2M ′′
2

)
k2a2 (double roots)

ξΓ−2 |M3| ka− 1
6

(
M ′

1+2M ′′
1+M ′

2+2M ′′
2

)
k2a2 (double roots)

ξΓ− 1
6

(
M ′

1+2M ′′
1+M ′

2+2M ′′
2

)
k2a2 (double roots)
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Since ωk = c
√

ξ, and ωΓ = c
√

ξΓ, we obtain the dispersion of the 3D
ADIDP:

ωk =





ωΓ + |M3| ac2k/ωΓ −
(

1
12 (M ′

1 + 2M ′′
1 + M ′

2 + 2M ′′
2) /ωΓ

− 1
2ω3

Γ
c2 |M3|2

)
a2c2k

2 (double roots)

ωΓ − |M3| ac2k/ωΓ −
(

1
12 (M ′

1 + 2M ′′
1 + M ′

2 + 2M ′′
2) /ωΓ

− 1
2ω3

Γ
c2 |M3|2

)
a2c2k2 (double roots)

ωΓ − 1
12 (M ′

1 + 2M ′′
1 + M ′

2 + 2M ′′
2) a2c2k2/ωΓ (double roots)
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