1. Nicolaides, R. A. and D. Q. Wang, "Helicity and variational principles for Maxwell's equations," Int. J. Electron., Vol. 54, 861-864, 1983.
doi:10.1080/00207218308938781
2. Cockburn, B., F. Li, and C. W. Chi, "Locally divergence-free discontinuous Galerkin methods for the Maxwell equations," Journal of Computational Physics, Vol. 194, No. 2, 588-610, 2004.
doi:10.1016/j.jcp.2003.09.007
3. Sheu, W. H., Y. W. Hung, M. H. Tsai, P. H. Chiu, and J. H. Li, "On the development of a triple-preserving Maxwell's equations solver in non-staggered grids ," Int. J. Numer. Meth. Fluids, Vol. 63, 1328-1346, 2010.
4. Sheu, W. H., L. Y. Liang, and J. H. Li, "Development of an explicit symplectic scheme that optimizes the dispersion-relation equation of the Maxwell's equations ," Communications in Computational Physics, Vol. 13, No. 4, 1107-1133, 2013.
5. Yee, K. S., "Numerical solution of initial boundary value problem involving Maxwell's equations in isotropic meida," IEEE Transactions on Antenna Propagation, Vol. 4, No. 3, 302-307, 1966.
6. Roden, J. A. and S. D. Gedney, "Convolutional PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media," Microwave Optical Tech. Lett., Vol. 27, 334-339, 2000.
doi:10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A
7. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics, Vol. 114, No. 2, 185-200, 1994.
doi:10.1006/jcph.1994.1159
8. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Ed., Artech House, Norwood, MA, 2005.
9. Wei, B., S. Q. Zhang, F. Wang, and D. Ge, "A novel UPML FDTD absorbing boundary condition for dispersive media, waves in random and complex media," Journal of Mathematical Physics, Vol. 20, No. 3, 511-527, 2010.
10. Luebbers, R. J., F. P. Huusberger, K. S. Kunz, R. B. Standler, and M. Schneider, "A frequency-dependent finite-difference time-domain formulation for dispersive materials," IEEE Transactions on Electromagnetic Compatibility, Vol. 32, No. 3, 222-227, 1990.
doi:10.1109/15.57116
11. Anderson, N. and A. M. Arthurs, "Helicity and variational principles for Maxwell's equations," Int. J. Electron, Vol. 54, 861-864, 1983.
doi:10.1080/00207218308938781
12. Gao, L., B. Zhang, and D. Liang, "The splitting finite-difference time-domain methods for Maxwell's equations in two dimensions," J. Comput. Applied Math, Vol. 205, 207-230, 2007.
doi:10.1016/j.cam.2006.04.051
13. Wei, B., X. Y. Li, F. Wang, and D. Ge, "A finite difference time domain absorbing boundary condition for general frequency-dispersive media," Acta Physica Sinica, Vol. 58, No. 7, 6174-6178, 2009.
14. Cole, K. S. and R. H. Cole, "Dispersion and absorption in dielectrics," J. Chem. Phys, Vol. 9, 341, 1941.
doi:10.1063/1.1750906
15. Kelley, F. and R. J. Luebber, "Piecewise linear recursive convolution for dispersive media using FDTD," IEEE Transactions on Electromagnetic Compatibility, Vol. 44, No. 6, 1966.