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Abstract—In this paper, an explicit finite-difference scheme is
developed in staggered grids for solving the Maxwell’s equations in
time domain. We are aimed to preserve the discrete zero-divergence
condition in the electrical and magnetic fields and conserve the inherent
laws in non-dispersive simple media all the time using the explicit
second-order accurate symplectic partitioned Runge-Kutta temporal
scheme for the time derivative terms. The spatial derivative terms
in the semi-discretized Faraday’s and Ampère’s equations are then
approximated to get an accurate numerical dispersion relation equation
that governs the numerical angular frequency and the wavenumbers for
the Maxwell’s equations defined in two space dimensions. To achieve
the goal of getting the best dispersive characteristics in the chosen
grid stencil, a fourth-order accurate space centered scheme with the
ability of minimizing the difference between the exact and numerical
dispersion relation equations is proposed. Our emphasis is placed
on the accurate modeling of EM waves in the dispersive media of
the Debye, Lorentz and Drude types. Through the computational
exercises, the proposed dual-preserving Maxwell’s equation solver is
computationally demonstrated to be efficient for use to predict the
long-term accurate wave solutions in a medium belonging either to a
frequency independent or dependent type.
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1. INTRODUCTION

With the advent of ever-improving hardware in CPU/GPU computa-
tional platforms and numerical methods in parallel environment, com-
putational electromagnetics has played an essential role in the design
of modern optical devices applied in different areas. This computing
alternative enables also an exploration of propagation details in the
optical media of practical relevance. We are therefore motivated to
develop a physically correct and numerically efficient solver for more
accurately predicting the electromagnetic (EM) wave propagation in
the frequency-dependent and frequency-independent optical media.

Prediction of EM wave propagation in optical media can be
carried out either in frequency or in time domain. In this study the
finite difference method is adopted to solve the Maxwell’s equations
in time domain so that the evolution of wave can be more clearly
understood. Within the FDTD context, approximation of the time
and spatial derivative terms in the Ampère’s and Faraday’s equations
must be physically correct and numerically efficient. For the Maxwell’s
equations defined in vacuum, for example, the geometric symplectic
structure must be retained all the time. Otherwise, the Hamiltonian
and Casimir in this Hamiltonian differential system can no longer be
preserved in particular after a long time simulation [1]. Violation
of the symplecticity-preserving property prohibits properly designing
many long-range wave propagation optical devices. Care on the
approximation of first-order spatial derivative terms must be also
taken into a serious consideration to avoid the dispersion error.
Such an error type can result in a complete erroneous propagation
speed, thereby leading to an unphysically oscillatory solution. Besides
the errors generated from the approximation of the time and space
derivative terms, calculation of the Ampère’s and Faraday’s equations
is subject to the satisfaction of discrete Gauss’s law [2]. The above
three theoretical considerations prompted our previous development
of the dispersion-relation, divergence-free, and symplecticity triple-
preserving scheme for solving the Maxwell’s in a computationally more
simple and a programmingly more easy non-staggered (or colocated)
grids [3].

In this study, we attempt to extend our previously developed
scheme for solving the Maxwell’s equations in free space to simulate the
frequency-dependent media. Three dispersive medium types, which
comprise the Debye, Lorentz and Drude dispersive media, are all
included in the generalized code for the Maxwell’s equations. To
numerically bridge the time increment and the spatial interval in the
TM wave prediction, the means of minimizing the difference between
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the dispersion relation equation and the exact dispersion relation
equation is adopted in this study rather than the minimization of
modified wave number derived in our previous paper [3, 4]. The
necessity of deriving the numerical dispersion relation equation in
the current minimization of dispersive error prompts us to adopt the
explicit partitioned Runge-Kutta non-iterative scheme rather than the
implicit Runge-Kutta symplectic scheme proposed in [4]. In addition,
to satisfy the discrete Gauss law the Yee’s staggered grid approach [5] is
adopted rather than the non-staggered grid approach published earlier
in [3, 4] to simplify the derivation of numerical dispersion relation
equation.

To avoid an erroneous wave reflection from the truncated
boundary, one can either prescribe a proper radiation boundary
condition along the truncated boundary itself or attach a finite width
layer at a location that is immediately adjacent to the physical
boundary to absorb the unphysical wave reflection. In this study the
CPML (Convolution Perfect Matching Layer) of Roden and Gedney [6]
rather than the PML of Berenger [7] is adopted since the former
matching layer approach has been reported to be able to absorb the
wave more effectively.

The rest of the paper is organized as follows. In Section 2, the
working equations applicable to non-dispersive and dispersive media
are developed in free space as well as in perfect matching layer. In
Section 3, we will present a splitting solution algorithm so that the
core of the Maxwell’s equations can be rigorously approximated not
only in space but also in time. In Section 4, the explicit partitioned
Runge-Kutta symplectic temporal scheme, which involves no iterative
procedure, is proposed to preserve the Hamiltonian in the ideal
Maxwell’s equations. This explicit scheme is also essential for us to
derive the numerical dispersion relation equations in Section 5 for the
cases investigated in one and two dimensional domains. In Section 6,
we analytically validate the proposed numerical methods and then in
Section 7 to address the distinction between the three investigated
dispersive media. Finally, some concluding remarks are drawn in
Section 8.

2. WORKING EQUATIONS

Most metals and many other materials exhibit their own dispersive
characteristics. The permittivity and permeability of these dispersive
media are functions of the optical frequency. For simplicity, in the
current study only the electric permittivity is assumed to be frequency-
dependent. Extension of the simulation to the case of frequency-
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dependent magnetic permeability and electric permittivity will be our
future study.

Numerical simulation of electromagnetic fields will be carried out
in time domain. While most constitutive equations for the dispersive
media are available in frequency domain, we should adopt its time-
domain counterpart so as to be consistent with the FDTD simulation.
As a result, the electric permittivity ε(t) becomes the sum of the
relative permittivity εr(≡ ε∞δ(t) + χ(t)) considered at the infinite
frequency ε∞ and the electric susceptibility χ(t) [8]

ε(t) = εo ( ε∞δ(t) + χ(t) ). (1)

In the above, t denotes time, ε0 is the permittivity in free space and
δ(t) stands for the delta function.

For a dispersive medium whose magnetic permeability is frequency
independent, the Ampère’s and Faraday’s laws can be respectively
represented below in time domain for modeling the time-varying
electric field variable E and the magnetic field variable H

∂

∂t
(ε(x, t) ∗ E(x, t)) = ∇×H − Jd, (2)

µ
∂H

∂t
= −∇× E. (3)

In Equation (2), ε is equal to ε0εr while µ in Equation (3) is identical to
µ0µr. The optical properties ε0, εr, µ0 and µr represent the free space
electric permittivity, relative electric permittivity, free-space magnetic
permeability, and relative magnetic permeability, respectively. Jd in
Equation (2) denotes the polarization current and depends on the types
of the investigated dispersive optical media. For simplicity, both of the
volume electric and magnetic current densities are assumed to be zero
under the source-free condition. The resulting differential system will
be solved subject to the Gauss’s law which comprises∇·B = ∇·D = 0.
The electric permittivity ε in (1) is a function of frequency for the sake
of simplicity when performing the current simulation. The notation
“∗” in Equation (2) denotes the convolution operator and it is defined
as f(t)∗g(t) =

∫ t
0 f(t−τ)g(τ) dτ for any two given functions f(t) and

g(t).
In the literature three constitutive models are often applied

to perform the FDTD electromagnetic wave simulations in Debye,
Lorentz and Drude media. For these three distinct media, their
susceptibility functions χ(ω) vary with time t and frequency ω. As
a result, the relative electric permittivity for the optical media having
P number of poles can be expressed in terms of the frequency and they
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are summarized in Table 1. In this table, u(t) denotes the unit step
function.

The parameters of the three dispersive media are chosen to be
ε∞ = 7, εs = 10, τ = 7.0 × 10−10 s for the Debye medium, ε∞ = 1.5,
εs = 3, ωp = 40π GHz, δp = 4π GHz for the Lorentz medium and
ε∞ = 1, fp = 28.7GHz, ωp = 2πfp, γp = 20GHz for the Drude
medium [9]. The equations used for modeling the polarization current
in the three investigated dispersive media are given below

(1) Debye medium

Jd + τ
∂Jd

∂t
= ε0(εs − ε∞)

∂E

∂t
= ε0∆ε

∂E

∂t
. (4)

(2) Lorentz medium

ω2
pJd + 2δp

∂Jd

∂t
+

∂2Jd

∂t2
= ε0ω

2
p∆ε

∂E

∂t
. (5)

(3) Drude medium

γp
∂Jd

∂t
+

∂2Jd

∂t2
= ε0ω

2
p

∂E

∂t
. (6)

In the above, ∆ε = εs − ε∞, where εs is the static or zero-frequency
relative permittivity, ε∞ the permittivity at infinite frequency, τ the
pole relaxation time, ω the angular frequency, ωp the undamped
resonant frequency of the medium, and γp the inverse of the pole
relaxation time.

When simulating the electromagnetic wave propagation, it is
normally necessary to truncate the analysis domain somewhere in free
space so as to make the analysis computationally feasible. Truncation

Table 1. Summary of the three investigated optical media. In this
table, αp = βp, P = 1, βp = (ω2

p − δ2
p)

1
2 and γp = Gp

βp
(εs − ε∞) ω2

p.
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of physical domain leads very often to a wave reflection back to the
domain of interest. Such an unphysical wave reflection will possibly
interact with the incident physical wave. To circumvent this problem,
one can either prescribe a proper set of differential equations on the
truncated boundary or attach a layer that is capable of absorbing the
reflected wave. In this study we adopt the means of attaching a perfect
matching layer at a location that is immediately downstream of the
truncated boundary.

Following the work of Berenger [7], the Maxwell’s equations in (2)–
(3) are first rewritten into their equivalent time-harmonic equations.
Besides the introduction of stretched coordinate metrics into the
Maxwell’s equations, the convolution operator is also accelerated
using the recursive convolution (RC) method proposed originally by
Lubber et al. [10]. The resulting modified Maxwell’s equations, which
take into account wave absorption, in frequency domain are then
transformed back to the time domain equations by virtue of the
Fourier transform. The Maxwell’s equations in the convolution perfect
matching layer (CPML) can then be derived.

In the calculation of the resulting electromagnetic equations in
time domain, the computational challenge lies in the implementation
of convolution terms shown in the last two terms on the right hand
sides

∂Dx

∂t
=

(
1
kx

∂Hz

∂y
− 1

kz

∂Hy

∂z
+ ζy ∗ ∂Hz

∂y
− ζz ∗ ∂Hy

∂z

)
,

∂Dy

∂t
=

(
1
kz

∂Hx

∂z
− 1

kx

∂Hz

∂x
+ ζz ∗ ∂Hx

∂z
− ζx ∗ ∂Hz

∂x

)
,

∂Dz

∂t
=

(
1
kx

∂Hy

∂x
− 1

ky

∂Hx

∂y
+ ζx ∗ ∂Hy

∂x
− ζy ∗ ∂Hx

∂y

)
, (7)

and

−∂Bx

∂t
=

(
1
kx

∂Ez

∂y
− 1

kz

∂Ey

∂z
+ ζy ∗ ∂Ez

∂y
− ζz ∗ ∂Ey

∂z

)
,

−∂By

∂t
=

(
1
kz

∂Ex

∂z
− 1

kx

∂Ez

∂x
+ ζz ∗ ∂Ex

∂z
− ζx ∗ ∂Ez

∂x

)
,

−∂Bz

∂t
=

(
1
kx

∂Ey

∂x
− 1

ky

∂Ex

∂y
+ ζx ∗ ∂Ey

∂x
− ζy ∗ ∂Ex

∂y

)
. (8)

Note that ki (i = x, y, z) is the wave number along the i direction and
ζw(t) ∗ ∂Hv(t)/∂w or ζw(t) ∗ ∂Ev(t)/∂w (w = x, y, z; v = x, y, z) are
the convolution terms, which are present only in PML regions.

By applying a piecewise constant approximation on the
convolution terms shown in (7)–(8), the Ampère’s and Faraday’s
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equations in the convolution perfect matching absorbing layers are as
follows

∂Ex

∂t
=

1
ε0εr

(
1
ky

∂Hz

∂y
− 1

kz

∂Hy

∂z
+ ψEx,y − ψEx,z

)
,

∂Ey

∂t
=

1
ε0εr

(
1
kz

∂Hx

∂z
− 1

kx

∂Hz

∂x
+ ψEy,z − ψEy,x

)
,

∂Ez

∂t
=

1
ε0εr

(
1
kx

∂Hy

∂x
− 1

ky

∂Hx

∂y
+ ψEz,x − ψEz,y

)
, (9)

and

−∂Hx

∂t
=

1
µ0µr

(
1
ky

∂Ez

∂y
− 1

kz

∂Ey

∂z
+ ψHx,y − ψHx,z

)
,

−∂Hy

∂t
=

1
µ0µr

(
1
kz

∂Ex

∂z
− 1

kx

∂Ez

∂x
+ ψHy,z − ψHy,x

)
,

−∂Hz

∂t
=

1
µ0µr

(
1
kx

∂Ey

∂x
− 1

ky

∂Ex

∂y
+ ψHz,x − ψHz,y

)
. (10)

In the above, ψEw,v or ψHw,v is defined as ζw(t) ∗ ∂Ev(t)/∂w or
ζw(t) ∗ ∂Hv(t)/∂w. The TM-mode Maxwell’s equations for a lossless
dispersive medium under current investigation are simplified as

∂Ez

∂t
=

1
ε0εr

(
1
kx

∂Hy

∂x
− 1

ky

∂Hx

∂y
− Jd,z + ψEz,x − ψEz,y

)
,

∂Hx

∂t
= − 1

µ0µr

(
1
ky

∂Ez

∂y
+ ψHx,y

)
,

∂Hy

∂t
=

1
µ0µr

(
1
kx

∂Ez

∂x
+ ψHy,x

)
, (11)

where ψn
Ez,x

= bx · ψn−1
Ez,x

+ cx · ∂Hn
y

∂x , ψn
Ez,y

= by · ψn−1
Ez,y

+ cy · ∂Hn
x

∂y ,

ψ
n+ 1

2
Hx,y

= by · ψn− 1
2

Hx,y
+ cy · ∂E

n+1
2

z
∂y , ψ

n+ 1
2

Hy,x
= bx · ψn− 1

2
Hy,x

+ cx · ∂E
n+1

2
z
∂x . Note

that the coefficient bw and cw (w = x or y) are nonzero only in PML
region with normal interface boundaries. In the above, bw and cw

(w = x or y) are both chosen to be the exponential functions given
below

bw = e

(
−

(
σw

ε0kw
+aw

ε0

)
∆t

)
;

cw =
σw

σwkw + k2
waw

(
e

(
−

(
σw

ε0kw
+aw

ε0

)
∆t

)
− 1

)
; w = x, y (12)

where σw = σw,max

(
d−w

d

)m
, aw = aw,max

(
d−w

d

)ma , kw = 1+(kw,max−
1) · (d−w

d

)m
. Note that the value of w falls between 0 and d. In PML,
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σw is increased from 0 at w = 0 to σw,max at w = d. Similarly, in PML
the value of kw is increased from 1 at w = 0 to kw,max at w = d [8].

3. SOLUTION ALGORITHM

In Section 2 we have derived the governing equations for the field
variables Ez, Hx and Hy in a domain of two dimensions. This set
of TM-mode equations applicable to the three investigated dispersive
media, which are characterized by their constitutive equations for
the relative electrical permittivities εr, contains the ideal Maxwell’s
equations and the terms due to the polarization current Jd summarized
in Equations (4)–(6), and the absorbing terms defined only in the
attached convolution perfect matching layer. The quality of simulating
the EM wave propagation in a dispersive medium depends therefore
on the prediction quality of the Maxwell’s equations derived in free
space, the suitability of the employed constitutive equations, which
are tabulated in Table 1, the simulation quality on the Equations (4)–
(6) for the polarization current, and the ability of the convolution
terms added to absorb the possibly reflected waves from the truncated
boundary.

In the above light, we are led to know that the entire set
of equations in (11) can be decomposed into the components
accounting for the propagation kernel, which denotes the ideal
Maxwell’s equations, the constitutive laws for the dispersive media,
the polarization current of the optical media, and the wave absorption.
The possibility of decomposing the equations into the specific
components motivates us to numerically treat them separately using
their respective suitable numerical methods. Following this line of
thought, we propose in this paper the numerical methods to calculate
the absorption terms ψHx,y , ψHy,x , ψEz,x , and ψEz,y in Equations (4)–
(6) and the polarization currents. In addition to these two calculations,
the solution quality for the wave simulation in dispersive media
depends highly on the way of discretizing the following Maxwell’s
equations in vacuum

∂Ez

∂t
=

1
ε0εr

(
1
kx

∂Hy

∂x
− 1

ky

∂Hx

∂y

)
,

∂Hx

∂t
= − 1

µ0µr

(
1
ky

∂Ez

∂y

)

∂Hy

∂t
=

1
µ0µr

(
1
kx

∂Ez

∂x

)
. (13)

We will address in next section that the symplectic structure in the
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equations can be retained in the course of approximating the equations
in (13). Besides choosing the temporal discretization to preserve the
symplectic nature in the Hamiltonian differential system, we will also
optimize the dispersion relation equation when discretizing the first-
order spatial derivative terms. It is best hoped that the chosen values
of ∆t and ∆x are well paired so as to get the best numerical dispersion
relation equations for the Ampère’s and Faraday’s equations.

4. EXPLICIT PARTITIONED RUNGE-KUTTA
TEMPORAL DISCRETIZATION

Faraday’s and Ampère’s equations in an ideal medium constitute a
Hamiltonian differential system. The reason is that these equations
can be expressed in terms of the Hamiltonian function H as ∂E

∂t = δH
∂H

and ∂H
∂t = − δH

∂E . In other words, the ideal Maxwell’s equation have the
following Hamiltonian functional H

H(H,E) =
1
2

∫

Ω

(
1
ε
H · ∇ ×H +

1
µ

E · ∇ × E

)
dΩ. (14)

It is also worthy to point out here that Equations (2)–(3) conserve the
following two invariants [11]

W1(t) =
∫

Ω
(ε E · E + µ H ·H) dΩ, (15)

W2(t) =
∫

Ω

(
ε

∣∣∣∣
∂E

∂t

∣∣∣∣
2

+ µ

∣∣∣∣
∂H

∂t

∣∣∣∣
2

)
dΩ. (16)

Note that W1(t) and W2(t) are defined as the energy density I and the
energy density II. When solving the canonical equations in (13), they
should be integrated in the physical domain Ω using the symplectic
type of integrators so as to retain the long-term accurate solution
behavior.

To preserve symplectic structure and conserve total energy in
the frequency independent Hamiltonian Maxwell’s equations, the
symplectic method of an implicit or an explicit type should be chosen.
In addition to preserving the symplectic structure along the time
direction, we are also aimed to develop a dispersively more accurate
scheme in the spatial domain. Our strategy of getting a higher spatial
accuracy is to make the numerical dispersion relation equation for
the Maxwell’s equations more closer to their exact dispersion relation
equation. In the wavenumber space, it is therefore necessary to derive
the numerical angular frequency explicitly in terms of the wavenumbers
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in x and y directions. Note that it is difficult or almost impossible to
apply any symplectic type of the Runge-Kutta schemes, which involve
several coupled solution steps, to derive the numerical dispersion
relation equation. In this study the explicit symplectic Runge-Kutta
scheme is employed so that it is possible to minimize the difference
between the exact and numerical dispersion relation equations for the
separable Hamiltonian system of Maxwell’s equations.

It has been well known for some time that Maxwell’s equations
can be rewritten to the infinite dimensional Hamiltonian system which
is endowed with the Hamiltonian H. We can therefore write the
separable Hamiltonian function H (or the energy density) as the sum
of T (E) and V (H), where T and V denote the kinetic energy and
the potential energy, respectively. Since the Hamiltonian system of
Maxwell’s equations is separable, the explicit symplectic partitioned
Runge-Kutta time-stepping scheme can be employed to integrate this
differential system of equations through the tableaus for the respective
Faraday’s and Ampère’s equations.

In this study, the second-order accurate explicit partitioned
Runge-Kutta scheme suitable for the currently investigated separable
Hamiltonian differential system is adopted to approximate the time
derivative terms. The resulting semi-discretized equations are as
follows

H∗ = Hn − dt

2µ
∇× En, (17)

En+1 = En +
dt

ε
∇×H∗, (18)

Hn+1 = H∗ − dt

2µ
∇× En+1. (19)

5. DISPERSION RELATION EQUATION PRESERVING
SPATIAL DISCRETIZATION METHOD

5.1. Discretization of One-dimensional Ampère’s and
Faraday’s Equations

Since the first-order Ampère’s and Faraday’s equations can be
transformed respectively to their equivalent second-order equations,
which are ∂2E

∂t2
= 1

εµ∇2E and ∂2H
∂t2

= 1
εµ∇2H, the spatial derivative

terms for E and H, which are ∂Ez
∂x and ∂Hy

∂x in the currently
investigated TM-mode equations, should be approximated by a center-
type numerical scheme. We first approximate the semi-discretized one-
dimensional Faraday’s equation by H∗ = Hn − dt

2µ∇× En using the
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physically correct center spatial scheme for the term ∂Ez
∂x . At an interior

point i in a grid system of uniform mesh size ∆x, our approximation of
the term ∂Ez

∂x given below involves using six stencil points at i± 1/2,
i± 3/2, i± 5/2

∂Ez

∂x
|i =

1
∆x

[
a1(Ez|i−5/2 − Ez|i+5/2) + a2(Ez|i−3/2 −Ez|i+3/2)

+a3(Ez|i−1/2 −Ez|i+1/2)
]
. (20)

The other first-order spatial derivative terms can be also expressed by
the form shown in (20).

By substituting first the centered approximation equation for
∂Ez
∂x |n into Equation (17) and then substituting the resulting magnetic

field solution H∗ into Equation (18), the discretized equation given
below can be obtained for the one-dimensional Ampère’s equation

Ez |n+1
i = 2Ez |ni −Ez |n−1

i +
c2∆t2

∆x2

[
(
a2

1

)
Ez |ni−10/2 +(2a1a2)Ez |ni−8/2

+
(
2a1a3 + a2

2

)
Ez |ni−6/2 +(−2a1a3 + 2a2a3)Ez |ni−4/2

+
(−2a1a2 − 2a2a3 + a2

3

)
Ez |ni−2/2 +

(−2a2
1 − 2a2

2 − 2a2
3

)
Ez |ni

+
(−2a1a2 − 2a2a3 + a2

3

)
Ez |ni+2/2 +(−2a1a3 + 2a2a3)Ez |ni+4/2

+
(
2a1a3 + a2

2

)
Ez |ni+6/2 +(2a1a2)Ez |ni+8/2 +

(
a2

1

)
Ez |ni+10/2

]
. (21)

Derivation of the above equation involves using Hn = H0 − dt
2µ∇× En

and ∇ × H0 = ε
∆t

(
En − En−1

)
, where H0 is denotes the value of H

at t = (n− 1/2)∆t.
Following the same discretization procedures, the algebraic

equation for the Faraday’s equation can be derived as follows

Hy |n+1
i = 2Hy |ni −Hy |n−1

i +
c2∆t2

∆x2

[
(a2

1)Hy |ni−10/2 +(2a1a2)Hy |ni−8/2

+
(
2a1a3 + a2

2

)
Hy |ni−6/2 +(−2a1a3 + 2a2a3)Hy |ni−4/2

+
(−2a1a2 − 2a2a3 + a2

3

)
Hy |ni−2/2 +

(−2a2
1 − 2a2

2 − 2a2
3

)
Hy |ni

+
(−2a1a2 − 2a2a3 + a2

3

)
Hy |ni+2/2 +(−2a1a3 + 2a2a3)Hy |ni+4/2

+
(
2a1a3 + a2

2

)
Hy |ni+6/2 +(2a1a2)Hy |ni+8/2 +

(
a2

1

)
Hy |ni+10/2

]
. (22)
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As before, the above equation is derived using the equations given
by Hn = H0 − ∆t

2µ∇ × En, En = En−1 + ∆t
ε ∇ × H0, and H0 =

Hn−1 − ∆t
2µ∇× En−1.

The free parameters a1, a2 and a3 will be determined below to
close the algebraic system of the derived discrete Maxwell’s equations.
To rigorously derive the algebraic equations for a1, a2 and a3 for getting
a good overall accuracy, our strategy is to reduce the amplitude as
well as the phase errors generated from the discretized Ampère’s and
Faraday’s equations. The modified equation analysis of second kind is
performed first on Equation (21) or (22) by expanding the terms φi±5/2,
φi±3/2 and φi±1/2, where φ = E or H, in Taylor series with respect to
φi. The two leading discretization errors shown in the resulting derived
dispersion relation equation are then eliminated to get the following
two equations

25a2
1 + 9a2

2 + a2
3 + 30a1a2 + 10a1a3 + 6a2a3 + 5a1 + 3a2 + a3 = 0,

(23)
625
12

a2
1 +

27
4

a2
2 +

1
12

a2
3 + 5a1a2a3

(
51
3a3

+
13
6a2

+
1

2a1

)

+
125
24

a1 +
9
8
a2 +

1
24

a3 +
Cr2

12
(5a1 + 3a2 + a3) = 0. (24)

To get the propagation characteristics of the TM-mode Maxwell’s
equations, we need, in particular, to reduce the dispersive error.
The reason is that such an error can cause the phase velocity to be
the functions of frequency and propagation angle. Any small error
generated in the wave propagation velocity may be cumulated to
reach an unacceptable level. The consequence is that the long-term
simulation quality can be seriously deteriorated.

Dispersion relation equation is a good measure to examine how
the angular frequency ω of the wave will vary with the wavenumber
k. A higher dispersion accuracy can be obtained provided that the
numerical angular frequency for the differential system of Ampère’s and
Faraday’s equations relates well with the wavenumber. To derive the
last algebraic equation, we are aimed to reduce the difference between
the numerical dispersion relation equation and the exact dispersion
relation equation. To achieve this goal, the equation in the space-time
domain (x, t) is transformed to its corresponding angular frequency-
wavenumber space (ω, kx). By substituting first the following plane-
wave solution for Ez, which is Ez|ni = E0

zeI(ωn∆t−kxi∆x), and the plane
wave solution for Hy, which is Hy|ni = H0

yeI(ωn∆t−kxi∆x), into the
differential Equation (21) or (22), the equation relating the angular
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frequency ω with the wavenumber kx can be derived as follows

ωnum∆t = cos−1

[
c2∆t2

2∆x2

(
(
2a2

1

)
cos (5kx∆x) + (4a1a2) cos (4kx∆x)

+2
(
2a1a3 + a2

2

)
cos (3kx∆x) + 2 (−2a1a3 + 2a2a3) cos (2kx∆x)

−2
(−2a1a2−2a2a3+a2

3

)
cos (kx∆x)−(−2a2

1−2a2
2−a2

3

)
)

+1

]
. (25)

For the purpose of minimizing the dispersion error, the equation
relating the angular frequency ωexact analytically with the wavenumber
kx given below is employed for the one-dimensional Maxwell’s
equations

ω2
exact = k2

xc2. (26)

For getting a dispersive accuracy as high as possible, in this study the
difference between the exact group velocity ∂ωexact

∂kx
and the numerical

group velocity ∂ωnum
∂kx

is minimized. Following the line of this thought,

the error function defined as
[

∂ωnum
∂kx

− ∂ωexact
∂kx

]2
is minimized in a weak

sense within the integral range given below

E =
∫ mπ

−mπ

[
∂ωnum

∂kx
− ∂ωexact

∂kx

]2

W (γ) dγ. (27)

In the above, γ = kx ∆x denotes the scaled wavenumber and W (γ) is
the weighting function. Inclusion of the weighting function in (27) is
to make the integration of Equation (27) possible.

The error function E will be minimized by enforcing the limiting
condition ∂E

∂a3
= 0 to get the third algebraic equation. The equation

derived from the above minimization means will be used together with
the other two algebraic equations derived previously by the modified
equation analysis of second kind. According to the simulation results,
the best result is obtained at m = π

2 . The resulting three introduced
coefficients ai (i = 1 ∼ 3) in Equation (20) are a1 = −0.00805,
a2 = 0.07443 and a3 = −1.18302. Through the minimization study
performed in the wavenumber domain and the modified equation
analysis of second kind for ∂Hx

∂x , the proposed center scheme with the
best numerical dispersion relation equation is known to have the spatial
accuracy order of fourth since ∂Hx

∂x = ∂Hx
∂x |exact − 0.015115 h4 ∂5Hx

∂x5 +
O(h6) + . . ..

For completeness, the numerical angular frequency ωnum derived
in this study is plotted against the wavenumber κ in Figs. 1 and 2 at
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Figure 3. (a) Comparison of the angular frequencies ω, which are
plotted against the wavenumber κx at Cr = 0.2 and m = 1/2.
(b) Comparison of group velocities, which are plotted against the
function of κx at Cr = 0.2 and m = 1/2.

different values of Cr and m, respectively. Furthermore, we can see
from Fig. 3 that our results are better than those predicted by the
Yee’s scheme.
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5.2. Discretization of Two-dimensional Ampère’s and
Faraday’s Equations

The time derivative term in the two-dimensional equation is
approximated first by the partitioned Runge-Kutta scheme to get the
semi-discretized Faraday’s equation. We then apply as before the
physically correct center scheme to approximate the spatial terms ∂Ez

∂x

and ∂Ez
∂y at an interior point (i, j) in a uniform grid system of the

mesh size ∆x = ∆y. This center scheme development involves using
the twelve nodal solutions at the stencil points (i± 1/2, j), (i± 3/2, j),
(i± 5/2, j), (i, j ± 1/2), (i, j ± 3/2) and (i, j ± 5/2) as follows

∂Ez

∂x
|i,j =

1
∆x

[
a1(Ez|i−5/2,j −Ez|i+5/2,j) + a2(Ez|i−3/2,j

−Ez|i+3/2,j) + a3(Ez|i−1/2,j − Ez|i+1/2,j)
]
,

∂Ez

∂y
|i,j =

1
∆y

[
a1(Ez|i,j−5/2 − Ez|i,j+5/2) + a2(Ez|i,j−3/2

−Ez|i,j+3/2) + a3(Ez|i,j−1/2 − Ez|i,j+1/2)
]
. (28)

Other first-order spatial derivative terms ∂Hy

∂x and ∂Hx
∂y are similarly

expressed by the same center scheme as those shown in (28).
Substitution of the above centered equation for ∂Ez

∂x |n into
Equation (17) and then the magnetic field solution H∗ into
Equation (18) enables us to get the following equation thanks to
Hn = H0 − ∆t

2µ∇× En and ∇×H0 = ε
∆t

(
En − En−1

)
.

Ez |n+1
i,j = 2Ez |ni,j −Ez |n−1

i,j +
c2∆t2

∆x2

[
a2

1

(
Ez|ni+10/2,j + Ez|ni−10/2,j

)

+2a1a2

(
Ez|ni+8/2,j + Ez|ni−8/2,j

)

+
(
2a1a3 + a2

2

) (
Ez|ni+6/2,j + Ez|ni−6/2,j

)

+(−2a1a3 + 2a2a3)
(
Ez|ni+4/2,j + Ez|ni−4/2,j

)

− (−2a1a2 − 2a2a3 + a2
3

) (
Ez|ni+2/2,j + Ez|ni−2/2,j

)

−2
(
a2

1 + a2
2 + a2

3

)
Ez|ni,j

]

+
c2∆t2

∆y2

[
a2

1

(
Ez|ni,j+10/2 + Ez|ni,j−10/2

)
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+2a1a2

(
Ez|ni,j+8/2 + Ez|ni,j−8/2

)

+
(
2a1a3 + a2

2

) (
Ez|ni,j+6/2 + Ez|ni,j−6/2

)

+(−2a1a3 + 2a2a3)
(
Ez|ni,j+4/2 + Ez|ni,j−4/2

)

− (−2a1a2 − 2a2a3 + a2
3

) (
Ez|ni,j+2/2 + Ez|ni,j−2/2

)

−2
(
a2

1 + a2
2 + a2

3

)
Ez|ni,j

]
. (29)

The numerical dispersion relation equation given below for the two-
dimensional Ampère’s and Faraday’s equations can be similarly derived
by substituting the plane wave solutions Ez|ni =E0

zeI(ωn∆t−kxi∆x−kyj∆y),
Hx|ni = H0

xeI(ωn∆t−kxi∆x−kyj∆y) and Hy|ni = H0
yeI(ωn∆t−kxi∆x−kyj∆y)

into the discrete Equation (29)

ωnum∆t = cos−1

[
1
2

c2∆t2

∆x2

(
2a2

1 cos (5kx∆x) + 4a1a2 cos (4kx∆x)

+2
(
2a1a3 + a2

2

)
cos (3kx∆x) + 2 (−2a1a3 + 2a2a3) cos (2kx∆x)

+2
(−2a1a2 − 2a2a3 + a2

3

)
cos (kx∆x) +

(−a2
1 − a2

2 − a2
3

)
)

+
1
2

c2∆t2

∆y2

(
2a2

1 cos (5ky∆y) + 4a1a2 cos (4ky∆y)

+2
(
2a1a3 + a2

2

)
cos (3ky∆y) + 2 (−2a1a3 + 2a2a3) cos (2ky∆y)

+2
(−2a1a2 − 2a2a3 + a2

3

)
cos (ky∆y) +

(−a2
1 − a2

2 − a2
3

)
)

+ 1

]
. (30)

The same procedure as that employed in Subsection 3.1 is adopted
to minimize the difference between the two-dimensional exact and
numerical dispersion relation equations

E =
∫ mπ

−mπ

∫ mπ

−mπ
W (kx∆x, ky∆y)

[
∂ωnum

∂k
− ∂ωexact

∂k

]2

d(kx∆x)d(ky∆y).(31)

The above real-valued error function has the minimum value, which is
zero, provided that ∂E

∂a3
= 0. Application of this minimization means

enables us to get one more algebraic equation to close the algebraic
system in the determination of the introduced parameters, which are
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a1 = 0.022277, a2 = −0.17244 and a3 = 0.77805, derived at Cr = 0.2
and m = π

2 . The numerical angular frequency ωnum is plotted against
different flow angles in Fig. 4. For completeness, the group velocity
is also plotted against the wavenumber κ in Fig. 5 at different angles.
For the sake of comparison, the numerical angular frequencies ω are
plotted against the wavenumber κ in Fig. 6 using different schemes.
Moreover, we compare the numerical dispersion errors predicted by
different schemes in Fig. 7, from which our scheme is clearly seen to
have a higher dispersive accuracy.

Given the definition of k2 = k2
x + k2

y, kx and ky can be expressed
in terms of k and θ as kx = k cos θ and ky = k sin θ. For the sake
of comparison of the numerical schemes and the discussion of the

(b)(a)

(c) (d)

Figure 8. Comparison of the phase velocity ratios Vp

c against θ (0◦ ≤
θ ≤ 360◦) at different values of Nλ using the CN [12], FDTDII [12]
and the current schemes. (a) Nλ = 5. (b) Nλ = 10. (c) Nλ = 20.
(d) Nλ = 30.
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predicted results, the parameter Nλ = λ
h , which represents the number

of grid points per wavelength λ(= 2π
k ), and Cr = c∆t

h , which is known
as the CFL number, are defined. The speed of light c is chosen as the
reference speed and h = ∆x = ∆y as the uniform grid size. Given the
above two definitions, the numerical phase velocity Vp, which is defined
as the ratio of the numerical angular frequency and the wavenumber k,
can be derived. We can express eIωnum∆t by virtue of Equation (30) to
get eIω∆t = eI∆t(ωR+iωI) = e−ωI∆t(cos(ωR∆t) + I sin(ωR∆t)). Define
R = e−ωI∆t cos(ωR∆t) and I = e−ωI∆t sin(ωR∆t), tan(ωR∆t) = I

R
and, then, the ratio of the numerical phase velocity Vp = ωR

k and the
exact phase velocity c can be derived as [12]

Vp

c
=

ωR

ck
=

Nλ

2πCr
tan−1

(
I

R

)
. (32)

For the sake of comparison, the ratio of the derived numerical
and exact phase velocities Vp

c for the three schemes investigated at
different values of Nλ are plotted in Fig. 8. For the case with fewer grid
points per wavelength, our scheme is clearly seen to improve the phase
velocity. Also, all the schemes are seen to have a better performance in
the region near θ = 45◦. As Nλ increases, the numerical phase velocity
asymptotically approaches the exact phase velocity. In Fig. 9, the
derived free parameters a1, a2 and a3 are plotted against θ for the
current scheme implemented at different values of the Courant number
Cr.



536 Sheu, Chung, and Li

6. VALIDATION AND ASSESSMENT OF THE DUAL
PRESERVING MAXWELL’S EQUATION SOLVER

6.1. Analytical Validation of the Maxwell’s Equations in
Free Space

The explicit symplectic scheme with the optimized numerical
dispersion relation equation developed in staggered grids will be
validated by solving the TM-mode Maxwell’s equations at µ = 1 and
ε = 1 in −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1. In this study, the problem
amenable to analytic solution given below will be solved subject to
the initial solenoidal solutions Ez(x, y, 0) = cos(−2t), Hx(x, y, 0) =
sin θ · cos(−2t) and Hy(x, y, 0) = − cos θ · cos(−2t)

Ez(x, y, t) = cos(2 cos θ · x + 2 sin θ · y − 2t),
Hx(x, y, t) = sin θ · cos(2 cos θ · x + 2 sin θ · y − 2t),
Hy(x, y, t) = − cos θ · cos(2 cos θ · x + 2 sin θ · y − 2t).

(33)

According to the computed errors tabulated in Table 2, the proposed
dual-preserving scheme in free space for the TM-mode Maxwell’s
equations is analytically validated.

Besides performing the above validation study, the Hamiltonian
defined in (14) and the energy densities I and II given in (15)–(16)
are calculated. Note that the Hamiltonian is trivially equal to zero in
any two-dimensional TM-mode Maxwell’s equations. As a result, only
the predicted and exact energy densities are plotted against time in
Fig. 10. One can clearly see from this figure that the computed W1

Table 2. Comparison of the computed L2-error norms and the
required CPU times needed to get the results at t = 50 (s). The results
are obtained at Cr = 0.2 and 0◦ ≤ θ ≤ 90◦. The weighting coefficients
for a1, a2 and a3 obtained at different angles are also tabulated for the
sake of completeness.

Degree Ez L2-err or norm CPU time        (s) a a a

0&90 3.6512E-05 22.64 0.0073316 0.074991 1.1883

6&84 3.0065E-05 23.17 0.0075212 0.075939 1.1902

9&81 6.1265E-05 23.50 0.0074934 0.075800 1.1899

12&78 2.1540E-05 22.89 0.0073804 0.075236 1.1888

22.5&67.5 4.9418E-05 25.08 0.0068729 0.072698 1.1837

30&60 1.8921E-05 20.39 0.0063184 0.069925 1.1782

36&54 2.1185E-05 20.78 0.0058114 0.067390 1.1731

45 5.4198E-05 22.37 0.0053241 0.064954 1.1682

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

1 2 3
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Figure 11. The computed reflective errors in different dispersive
media. (a) The reflective error of CPML in vacuum. (b) The reflective
error of CPML in Debye medium. (c) The reflective error of CPML in
Lorentz medium. (d) The reflective error of CPML in Drude medium.
Note that points P and Q are located at (70∆x, 70∆y) and (70∆x,
41∆y), respectively. Note that ∆x = ∆y = 8.8565E − 04m.

and W2 values do not change with time using the explicit partitioned
Runge-Kutta symplectic scheme. The value of ∇·H is predicted to be
almost equal to zero. The Gauss’s law is satisfied discretely using the
explicit partitioned Runge-Kutta symplectic scheme.

6.2. Validation of the Maxwell’s Equations in the Domain

Analysis is then performed in the square of area 4.694E-03 m2

containing the dispersive media and the CPML layer with 10 cells. At
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the square centroid the incident Gaussian pulse with the bandwidth of
5–30GHz is given below

Gaussian pulse = cos (2πft) · exp
[
−4π (t− t0)2

d2

]
. (34)

In the above, d = 200∆t, t0=6/f and f = 17.5GHz. The calculation
carried out in a uniform mesh of [81×81] nodal points involves the grid
size ∆x = ∆y = 8.565E − 04m and time step ∆t = ∆x/5c, where c
is the speed of light. One can observe from Fig. 11 that the computed
reflective errors at point P, which is at (70∆x, 70∆y) location, and Q,
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electromagnetic wave (Ez field) solutions in the domain including both
of the vacuum and dispersive media. (a) Air-Debye medium. (b) Air-
Lorentz medium. (c) Air-Drude medium.
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Figure 13. Comparison of the computed and referenced [13]
electromagnetic wave (Ez field) solutions in vacuum and dispersive
media. (a) Vacuum and insulating medium. (b) Debye medium.
(c) Lorentz medium. (d) Drude medium.

which is at (70∆x, 41∆y) in three investigated dispersive media are all
negligibly small.

6.3. Assessment of the Proposed and Referenced Numerical
Methods

The physical domain of current interest involves the left half of the
vacuum and the right half contains the dispersive media, which include
the three investigated Debye, Lorentz and Drude materials. Each half
of the domain is divided into the 250 uniform intervals of the length
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∆x = 7.5 × 10−5 m. At two ends of the one-dimensional domain,
perfect matching layers of length 10∆x are attached so as to absorb
the possibly reflected wave.

A Gaussian pulse placed in the middle of the vacuum, or located
at x = 125∆x , takes the form exp[−( t−t0

d )2]. This pulse is defined
by d = 40∆t, t0 = 120∆t, where ∆t = 0.125 × 10−12 second. The
parameters of the three dispersive media on the right-half of the
physical domain are chosen to be ε∞ = 7, εs = 10, τ = 7.0×10−12 s for
the Debye medium, ε∞ = 1, fp = 28.7GHz, ωp = 2πfp, γp = 20 GHz
for the Drude medium, and ε∞ = 1.5, εs = 3, ωp = 40π GHz,
δp = 4π GHz for the Lorentz medium. The computed values of Ez for
all three dispersive media are plotted against time at the monitoring
point 489∆x. One can clearly see that our results plotted in Fig. 12
agree well with the referenced solutions [13], thereby validating again
the proposed numerical method.

With the success of validating the method for the one-dimensional
simulation in dispersive medium, we will then apply the proposed
method to simulate the problem involving the same Gaussian source as
that in the 1D problem. In the physical domain of area 6.806E-05 m2,
the dispersive media of Debye, Lorentz and Drude types are surrounded
by the perfect matching layer with the width of 10∆x to effectively
absorb the outgoing wave. The simulated time-varying results of Ez

at the monitoring point, which is located at (100∆x, 100∆y), for the
optical media of simple, Debye, Lorentz and Drude types are plotted
in Fig. 13. As this figure shows, agreement between the present and
the referenced solutions [13] is excellent.

7. NUMERICAL RESULTS IN DISPERSIVE MEDIA

7.1. Numerical Results in Debye Medium

We considered a one-dimensional problem consisting of 1000 cells. The
first five hundred cells are used to model the vacuum (air) while the
rest of five hundred cells are used for the Debye model (water) [10].
Each cell has a length of 37.5µm and the time step was 0.0625 ps.
The parameters used in this example are εs = 81, ε∞ = 1.8, and
t0 = 9.4E − 12 [14]. The simulated propagation of this pulse through
the air-water domain is shown in Fig. 14. The incident Gaussian pulse
with the frequency spectrum up to 100GHz is considered and is plotted
in Fig. 15. The reflection occurring at the air-water interface (cell 500)
is clearly visible. As the pulse propagates through the water, both of
the attenuation and dispersion are clearly shown.

The wide bandwidth reflection coefficient was determined for
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the air-water interface by calculating the incident and reflected field
strengths versus time at a position that is one cell ahead of the air-
water interface. Two computations were performed. The first one
involves the free-space parameters for the entire sample space. The
result of this calculation shows the incident pulse at the interface versus
time. A second calculation contains the air-water domain and the same
position in front of the interface is considered. The result of the second
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Figure 14. The computational domain includes vacuum (1∼500 grids)
and the Debye medium (501∼1000 grids). The computed values of Ez

at different times. (a) Time step = 1200 (or t = 75ps). (b) Time
step = 1920 (or t = 120 ps). (c) Time step = 2340 (or t = 146.25 ps).
(d) Time step = 4000 (or t = 250 ps).
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f/Hz
0 2E+10 4E+10 6E+10

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Analytic solution

Present

M
a

g
n

it
u

d
e 

o
f 

re
fl

ec
ti

o
n

 c
o

ef
fi

ci
en

t

Figure 16. The predicted magnitude of the reflective coefficient for
the Debye medium.

calculation shows the total field in the front of the interface. The
reflected field is obtained by subtracting the result of the incident field
(no water) from the total field with the presence of water interface.
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These electric fields versus time were transformed to the frequency
domain by means of the Fast Fourier Transform (FFT). The reflection
coefficient at each frequency was calculated by dividing the transforms
of the reflected field and incident field results. Our results obtained
after 4000 time steps (or at t = 250 ps) are compared well with the
exact analytical frequency domain result in Fig. 16.
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Figure 17. The time-history of the predicted values of Ez. (a) Time
step = 120 (or t = 50 ps). (b) Time step = 640 (or t = 266 ps).
(c) Time step = 1000 (or t = 416.6 ps). (d) Time step = 2000 (or
t = 833.2 ps).
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Figure 18. The predicted values of Ez against time in (a) time domain
(x = 235∆x, t = 0120∆t); (b) frequency domain.

7.2. Numerical Results in Lorentz Medium

For the one-dimensional Lorentz problem [15], the parameters used
for the current FDTD calculation involve the cell size ∆x = 250µm ,
time increment ∆t = 0.0625 ps (the Courant number limit), 1000 cells,
and 2000 time steps. The dispersive half-space is characterized by a
single pair of complex conjugate poles with the parameters εs = 3.0,
ε∞ = 1.5, ωp = 2π × 20GHz and δp = 0.1ωp. The conductivity σ
is zero. The propagation of the pulse through the vacuum-Lorentz
space is shown in Fig. 17. The incident Gaussian pulse used in the
present FDTD solution has a width of 40 cells and contains a significant
amount of energy at the frequency up to approximately 100 GHz in
Fig. 18.

The reflection coefficient is calculated by computing the FFT
result for the time history of the reflected pulse at the interface and the
FFT result for the time history of the incident pulse. Each frequency
component of the first FFT result is divided by the corresponding
component of the second FFT result to give the refection coefficient as
the function of frequency. The simulated magnitudes of the reflection
coefficient are compared well with the analytical data in Fig. 19.

7.3. Numerical Results in Drude Medium

We considered a problem consisting of 800 cells in the one-dimensional
domain which includes the Drude medium (300 ∼ 500 grids) and
the other is vacuum. Each cell has the length of 75µm and the



Progress In Electromagnetics Research, Vol. 132, 2012 545

0 2E+10 4E+10 6E+10 8E+10 1E+11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Analytic solution

Present

M
a
g
in

it
u

d
e 

o
f 

re
fl

ec
ti

o
n

 c
o
ef

fi
ci

en
t

f/Hz

Figure 19. The predicted magnitude of the reflective coefficient for
the Lorentz medium.

time increment was 0.125 ps and the number of time steps is 9600.
The parameters used in this Drude model (plasma) are ε∞ = 1.0,
fp = 28.7GHz, ωp = 2πfp, γp = 20 GHz.

The propagation of the investigated pulse through the vacuum-
plasma-vacuum space is simulated and the results are shown in Fig. 20.
The incident wave was a derivative Gaussian pulse, shown in Fig. 21,
with the frequency spectrum up to 100 GHz and the center frequency is
50GHz. The reflection occurring at the vacuum-plasma interface (cell
299) is clearly visible. The transmission that occurs at the plasma-
vacuum interface (cell 501) is also clearly visible. The attenuation and
dispersion are also clearly exhibited as the pulse propagates through
the plasma.

The wide bandwidth reflection coefficient was determined for the
vacuum-plasma interface by calculating the incident and reflected
field strengths versus time at a position with one cell ahead of the
vacuum-plasma interface. The wide bandwidth transmission coefficient
was determined for the plasma-vacuum interface by calculating the
transmission field strength versus time at a position with one cell
behind the plasma-vacuum interface.

Three computations were performed. The first is for the free-
space parameter values. The result of this calculation provided the
incident pulse at the interface (at cell number 299) versus time. A
second calculation contains the vacuum-plasma domain. The result
is shown at the same position in front of the interface. The result of
the second calculation revealed the total field in front of the interface.
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The reflected field was obtained by subtracting the incident field result
(no plasma) from the total field result with the presence of the plasma
interface. The third calculation contains the plasma-vacuum domain
and the result is plotted at the position (at cell number 501) in the
rear of the plasma-vacuum interface. The result of the third calculation
provided the transmission field.

These electric fields versus time were transformed to the frequency
domain via the fast Fourier transform. The reflection coefficient at each
frequency was calculated by dividing the transforms of the reflected
field and the incident field. The transmission coefficient at each
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Figure 20. The time-history of the predicted values of Ez. (a) Time
step = 1340 (or t = 167.5 ps). (b) Time step = 1600 (or t = 200 ps).
(c) Time step = 2140 (or t = 267.5 ps). (d) Time step = 3780 (or
t = 472.5 ps).
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Figure 21. The predicted values of Ez against time in (a) time domain
(x = 30∆x, t = 0 ∼ 1340∆t); (b) frequency domain.
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Figure 22. (a) The predicted reflection coefficient (dB) for the Drude
medium. (b) The predicted transmission coeffi-cient (dB) for the
Drude medium.

frequency was calculated by transforming the transmission field and
the incident field. We compare our results after the 9600 time step
with the exact frequency domain result for both of the reflection and
transmission coefficients shown in Fig. 22.
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8. CONCLUDING REMARKS

A theoretically rigorous solver is proposed to simulate the Maxwell’s
equations in frequency-independence and frequency-dependence me-
dia. Our aim is to generalize the Maxwell’s equations solver in a sense
that the symplectic property is present and the numerical dispersion
relation equation is optimized in free space. All the simulation re-
sults obtained from the proposed method in Debye, Lorentz and Drude
media agree excellently with the analytical as well as the benchmark
solutions.
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