Vol. 44
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-09-20
A Novel Nonuniform Subgridding Scheme for FDTD Using an Optimal Interpolation Technique
By
Progress In Electromagnetics Research B, Vol. 44, 137-161, 2012
Abstract
Finite-Difference Time-Domain (FDTD) subgridding schemes can significantly improve efficiency of various electromagnetic circuit simulations. However, numerous subgridding schemes suffer from issues associated with stability, efficiency, and material traverse capability. These issues limit general applicability of FDTD subgridding schemes to realistic problems. Herein, a robust nonuniform subgridding scheme is presented that overcomes those weaknesses. The scheme improves simulation accuracy with the aid of greatly increased stability margin and an optimal interpolation technique. It also improves simulation efficiency by allowing the use of time step factors as close as the Courant-Friedrichs-Lewy (CFL) limit. In addition, latetime stability and general applicability are verified through practical microstrip circuit simulation examples.
Citation
Gyusub Kim, Ercument Arvas, Veysel Demir, and Atef Elsherbeni, "A Novel Nonuniform Subgridding Scheme for FDTD Using an Optimal Interpolation Technique," Progress In Electromagnetics Research B, Vol. 44, 137-161, 2012.
doi:10.2528/PIERB12071013
References

1. Elsherbeni, A. and V. Demir, The Finite-difference Time-domain Method for Electromagnetics with MATLAB Simulations, SciTech Publishing, Inc., Raleigh, NC, 2009.

2. Courant, R., K. Friedrichs, and H. Lewy, "On the partial difference equations of mathematical physics," IBM Journal of Research and Development, Vol. 11, No. 2, 215-234, 1967.
doi:10.1147/rd.112.0215

3. Thoma, P. and T. Weiland, "A consistent subgridding scheme for the finite difference time domain method," Int. J. Numer. Modeling: Electron. Networks, Devices Fields, Vol. 9, 359-374, 1996.
doi:10.1002/(SICI)1099-1204(199609)9:5<359::AID-JNM245>3.0.CO;2-A

4. Krishnaiah, K. and C. Railton, "A stable subgridding algorithm and its application to eigenvalue problems," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 5, 620-628, May 1999.
doi:10.1109/22.763164

5. Xiao, K., D. Pommerenke, and J. Drewniak, "A three dimensional FDTD subgridding algorithm based on interpolation of current density," Proc. IEEE EMC Symp., Vol. 1, 118-123, Santa Clara,CA, 2004.

6. Xiao, K., D. Pommerenke, and J. Drewniak, "A three-dimensional FDTD subgridding algorithm with separated temporal and spatial interfaces and related stability analysis," IEEE Trans. Antennas Propagat., Vol. 55, No. 7, 1981-1990, Jul. 2007.
doi:10.1109/TAP.2007.900180

7. Monk, P., "Subgridding FDTD schemes," Appl. Comput. Electromagn. Society J., Vol. 11, No. 1, 37-46, 1996.

8. Chilton, R. A. and R. Lee, "Conservative and provably stable FDTD subgridding," IEEE Trans. Antennas Propagat., Vol. 55, No. 9, 2537-254, Sep. 2007.
doi:10.1109/TAP.2007.904092

9. Chevalier, M. W., R. J. Luebbers, and V. P. Cable, "FDTD local grid with material traverse," IEEE Trans. Antennas Propagat., Vol. 45, 411-421, Mar. 1997.
doi:10.1109/8.558656

10. White, M. J., Z. Yun, and M. F. Iskander, "A new 3-D FDTD multigrid technique with dielectric traverse capabilities," IEEE Trans. Microw. Theory Tech., Vol. 49, 422-430, 2001.
doi:10.1109/22.910545

11. Vaccari, A., R. Pontalti, C. Malacarne, and L. Cristoforetti, "A robust and efficient subgridding algorithm for finite-difference time-domain simulations of Maxwell's equations," J. Comp. Phys., Vol. 194, 117-139, 2004.
doi:10.1016/j.jcp.2003.09.002

12. Donderici, B. and F. L. Teixeira, "Improved FDTD subgridding algorithms via digital filtering and domain overriding," IEEE Trans. Antennas Propagat., Vol. 53, No. 9, 2938-2951, 2005.
doi:10.1109/TAP.2005.854558

13. Kulas, L. and M. Mrozowski, "Low reflection subgridding," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 5, 1587-1592, 2005.
doi:10.1109/TMTT.2005.847048

14. Berenger, J.-P., "A Huygens subgridding for the FDTD method," IEEE Trans. Antennas Propagat., Vol. 54, 3797-3804, 2006.
doi:10.1109/TAP.2006.886519

15. Moler, C., Numerical Computing with MATLAB, 2004, Available: http://www.mathworks.com/moler/index ncm.html.

16. Okoniewski, M., E. Okoniewska, and M. A. Stuchly, "Three-dimensional subgridding algorithm for FDTD," IEEE Trans. Antennas Propagat., Vol. 45, No. 3, 422-429, 1997.
doi:10.1109/8.558657

17. Kermani, M. H. and O. M. Ramahi, "The complementary derivatives method: A second-order accurate interpolation scheme for nonuniform grid in FDTD simulation," IEEE Microw. Wireless Compon. Lett., Vol. 16, 60-62, Feb. 2006.
doi:10.1109/LMWC.2005.863253

18. "Sonnet User's Guide --- Release 12," Sonnet Software Inc., North Syracuse, NY, Apr. 2009.

19. Liu, Y. and C. D. Sarris, "Efficient modeling of microwave integrated circuit geometries via a dynamically adaptive mesh refinement (AMR) --- FDTD technique," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 2, 689-703, Feb. 2006.
doi:10.1109/TMTT.2005.862660

20. Sheen, D. M., S. M. Ali, M. D. Abouzahra, and J. A. Kong, "Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits," IEEE Trans. Microw. Theory Tech., Vol. 38, 849-857, Jul. 1990.