1. Elsherbeni, A. and V. Demir, The Finite-difference Time-domain Method for Electromagnetics with MATLAB Simulations, SciTech Publishing, Inc., Raleigh, NC, 2009.
2. Courant, R., K. Friedrichs, and H. Lewy, "On the partial difference equations of mathematical physics," IBM Journal of Research and Development, Vol. 11, No. 2, 215-234, 1967.
doi:10.1147/rd.112.0215
3. Thoma, P. and T. Weiland, "A consistent subgridding scheme for the finite difference time domain method," Int. J. Numer. Modeling: Electron. Networks, Devices Fields, Vol. 9, 359-374, 1996.
doi:10.1002/(SICI)1099-1204(199609)9:5<359::AID-JNM245>3.0.CO;2-A
4. Krishnaiah, K. and C. Railton, "A stable subgridding algorithm and its application to eigenvalue problems," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 5, 620-628, May 1999.
doi:10.1109/22.763164
5. Xiao, K., D. Pommerenke, and J. Drewniak, "A three dimensional FDTD subgridding algorithm based on interpolation of current density," Proc. IEEE EMC Symp., Vol. 1, 118-123, Santa Clara,CA, 2004.
6. Xiao, K., D. Pommerenke, and J. Drewniak, "A three-dimensional FDTD subgridding algorithm with separated temporal and spatial interfaces and related stability analysis," IEEE Trans. Antennas Propagat., Vol. 55, No. 7, 1981-1990, Jul. 2007.
doi:10.1109/TAP.2007.900180
7. Monk, P., "Subgridding FDTD schemes," Appl. Comput. Electromagn. Society J., Vol. 11, No. 1, 37-46, 1996.
8. Chilton, R. A. and R. Lee, "Conservative and provably stable FDTD subgridding," IEEE Trans. Antennas Propagat., Vol. 55, No. 9, 2537-254, Sep. 2007.
doi:10.1109/TAP.2007.904092
9. Chevalier, M. W., R. J. Luebbers, and V. P. Cable, "FDTD local grid with material traverse," IEEE Trans. Antennas Propagat., Vol. 45, 411-421, Mar. 1997.
doi:10.1109/8.558656
10. White, M. J., Z. Yun, and M. F. Iskander, "A new 3-D FDTD multigrid technique with dielectric traverse capabilities," IEEE Trans. Microw. Theory Tech., Vol. 49, 422-430, 2001.
doi:10.1109/22.910545
11. Vaccari, A., R. Pontalti, C. Malacarne, and L. Cristoforetti, "A robust and efficient subgridding algorithm for finite-difference time-domain simulations of Maxwell's equations," J. Comp. Phys., Vol. 194, 117-139, 2004.
doi:10.1016/j.jcp.2003.09.002
12. Donderici, B. and F. L. Teixeira, "Improved FDTD subgridding algorithms via digital filtering and domain overriding," IEEE Trans. Antennas Propagat., Vol. 53, No. 9, 2938-2951, 2005.
doi:10.1109/TAP.2005.854558
13. Kulas, L. and M. Mrozowski, "Low reflection subgridding," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 5, 1587-1592, 2005.
doi:10.1109/TMTT.2005.847048
14. Berenger, J.-P., "A Huygens subgridding for the FDTD method," IEEE Trans. Antennas Propagat., Vol. 54, 3797-3804, 2006.
doi:10.1109/TAP.2006.886519
15. Moler, C., Numerical Computing with MATLAB, 2004, Available: http://www.mathworks.com/moler/index ncm.html.
16. Okoniewski, M., E. Okoniewska, and M. A. Stuchly, "Three-dimensional subgridding algorithm for FDTD," IEEE Trans. Antennas Propagat., Vol. 45, No. 3, 422-429, 1997.
doi:10.1109/8.558657
17. Kermani, M. H. and O. M. Ramahi, "The complementary derivatives method: A second-order accurate interpolation scheme for nonuniform grid in FDTD simulation," IEEE Microw. Wireless Compon. Lett., Vol. 16, 60-62, Feb. 2006.
doi:10.1109/LMWC.2005.863253
18. "Sonnet User's Guide --- Release 12," Sonnet Software Inc., North Syracuse, NY, Apr. 2009.
19. Liu, Y. and C. D. Sarris, "Efficient modeling of microwave integrated circuit geometries via a dynamically adaptive mesh refinement (AMR) --- FDTD technique," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 2, 689-703, Feb. 2006.
doi:10.1109/TMTT.2005.862660
20. Sheen, D. M., S. M. Ali, M. D. Abouzahra, and J. A. Kong, "Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits," IEEE Trans. Microw. Theory Tech., Vol. 38, 849-857, Jul. 1990.