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Abstract—Finite-Difference Time-Domain (FDTD) subgridding
schemes can significantly improve efficiency of various electromagnetic
circuit simulations. However, numerous subgridding schemes suffer
from issues associated with stability, efficiency, and material traverse
capability. These issues limit general applicability of FDTD subgrid-
ding schemes to realistic problems. Herein, a robust nonuniform sub-
gridding scheme is presented that overcomes those weaknesses. The
scheme improves simulation accuracy with the aid of greatly increased
stability margin and an optimal interpolation technique. It also im-
proves simulation efficiency by allowing the use of time step factors as
close as the Courant-Friedrichs-Lewy (CFL) limit. In addition, late-
time stability and general applicability are verified through practical
microstrip circuit simulation examples.

1. INTRODUCTION

The finite-difference time-domain (FDTD) method is a very attractive
numerical tool to solve various electromagnetic problems for its
simplicity of straightforward implementation and capability of
handling complex geometries [1]. Recent rapid development of
computer technology has led to extensive applications using the FDTD
method. Researches have shown that subgridding approach can
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improve efficiency and accuracy of the standard FDTD algorithm
dramatically. Subgridding scheme has been under great attention
during the past two decades, as a consequence, numerous promising
subgridding schemes have been developed and a number of remarkable
results have come out.

Overall performance and robustness of a certain subgridding
scheme can be evaluated based on following key aspects:

(i) Accuracy, which mainly depends on a coupling method and
reflection level at the interface between main-grid (MG) and sub-
grid (SG) regions.

(ii) Efficiency, which is directly associated with the complexity of
coupling scheme and the use of Courant-Friedrichs-Lewy (CFL)
time step limit [2].

(iii) Stability that determines practical usefulness.
(iv) General applicability represented by material traverse capability,

especially for thin PEC plates.
(v) Simplicity that ensures easy integration of subgridding scheme

into the standard FDTD algorithm.

Some aspects are interconnected with a trade-off relation, so other
performance factors are frequently sacrificed if one aspect is intensively
pursued. For instance, emphasis on ensuring no late-time instability
often deteriorates simulation accuracy and efficiency. Nevertheless,
a general goal in the development of a subgridding algorithm is
to achieve high level of performance and robustness in all of the
key aspects mentioned above. Many of the published subgridding
methods show their own advantageous features. Simultaneously, each
subgridding scheme also has its own limitations or weaknesses that
were relatively disregarded for reinforcing certain beneficial aspects.
A few subgridding schemes were developed focusing on stability.
Thoma and Weiland presented a consistent 3-D subgridding scheme
using the finite integration technique in [3]. Krishnaiah and Railton
also proposed a similar consistent coupling method by introducing
an equivalent passive circuit model in [4]. Both methods used
linearly interpolated tangential magnetic field components as boundary
conditions of the SG region. For temporal interpolation, the former
used nearest neighbor method, and linear interpolation in time was
implemented in the latter. The former and the latter adopted different
refinement factors of 1 : 2 and 1 : 3, respectively. A reduced CFL
number by a factor of two was chosen for a stable result in [3], but it
was not reported in [4].

Xiao et al. proposed an explicit 3-D subgridding algorithm based
on the interpolation of current density distribution in [5]. A stable
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subgridding scheme could be achieved by maintaining the consistency
and symmetry of forward (from MG to SG) and backward (from SG to
MG) couplings. Later, their method was improved in [6] by introducing
the separation of temporal and spatial interfaces. The nearest neighbor
interpolation in time given in [3] was adopted in [6], and the CFL factor
used in their numerical experiments was not reported.

Subgridding schemes [3–6] successfully achieved the goal of
stability, however, they have poor general applicability associated
with material discontinuities at the interfaces or require additional
special treatment to obtain it. Chilton and Lee, utilizing the “simple”
interpolation method [7], developed a conservative and probably stable
subgridding scheme based on the finite element principles in [8].
This subgridding algorithm can accomplish not only the probable
stability but also the material traverse capability due to the property
of the interpolation method. Using analytical discrete operator
approach and constructed coupling stencil matrix, the conservative
spatial interpolation method was presented. However, an identical
time increment for both MG and SG was used in the leapfrog time
integration, i.e., no temporal interpolation was dealt with in [8]; this
deteriorates the overall simulation efficiency significantly. Moreover,
its implicit update process makes the implementation of the proposed
spatial interpolation very complex.

There has been strong interest in the development of a subgridding
scheme to allow traversing inhomogeneous regions including dielectric
and PEC discontinuities at the MG-SG interface. This is an
important issue related to the accuracy and stability as well as general
applicability. In 1997, Chevalier et al. proposed the subgridding
method with PEC traverse capability in [9]. Magnetic field components
were interpolated for an odd number of refinement factors, and
a modified linear interpolation method was provided for special
treatment of PEC traversing MG-SG interfaces. The used CFL
factor was reduced to 0.71 for maintaining stability. In 2001, White
et al. published the subgridding method [10] having dielectric traverse
capability by the use of a weighted function, which is dependent on
material properties. They provided a general method applied to any
number of refinement factors. However, this subgridding method can
be regarded as the one to use piecewise-constant interpolation in both
tangential and normal directions only if material parameters are well-
approximated by proper sub-cell averaging as in Chapter 3 of [1]. In
addition, the method reveals weakness in the presence of a thin PEC
plate traversing the boundary interface.

In this paper, we pursue a new subgridding scheme showing
satisfactory performance in all of the aforementioned key aspects. To
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this end, a novel nonuniform sub-grid mesh configuration is proposed
and its apparent benefit to increase the stability margin is verified. By
the combination of the mesh configuration and coupling of magnetic
field components, a robust subgridding scheme is developed and
superior performances are validated through realistic microstrip circuit
simulation examples.

2. A NOVEL NONUNIFORM SUB-GRID MESH

Comparing a subgridding scheme with a uniform FDTD algorithm,
we can see that the subgridding scheme has additional numerical
errors. These errors have been discussed in [11–14]. Especially [12]
explains three numerical error sources degrading subgridding accuracy:
(i) spatial frequency aliasing, (ii) high frequency cutoff, and (iii)
numerical impedance mismatch. To enhance subgridding accuracy,
digital filtering and phase compensation techniques were presented
in [12].

In the perspective of subgridding functional operation, the
aliasing (i) can be explained in terms of coupling (interpola-
tion/decimation [12]) and dislocation [13] errors. The coupling and dis-
location errors belonging to the aliasing and the numerical impedance
mismatch at the MG-SG interface are crucial sources affecting sub-
gridding accuracy. An accurate subgridding scheme requires minimiz-
ing numerical errors, but late-time instability is often unavoidable in
most of high-accuracy schemes, e.g., [13, 14] mitigating aliasing and
impedance mismatch, respectively. On the other hand, it has been
reported that late-time stable schemes show relatively poor reflection
performance due to the strict constraint of keeping coupling symme-
try as in [3]. Therefore, the most desirable subgridding scheme should
hold a high level of accuracy as well as stability, and the two contra-
dictory aspects might be accomplished by securing long-term stability
even without the aid of the strict symmetry constraint.

To this end, simply consider interpolation and dislocation errors.
For a stable solution, it is necessary that any numerical errors
must not be accumulated as a wave propagates in both time and
space. An interpolation error occurs when missing SG field values are
approximated from MG samples, and a dislocation error appears in the
updating process of field components when other fields needed for the
updating are not collocated. Generally both errors are mingled at the
same MG-SG boundary interface plane and undermine subgridding
stability as well as accuracy. If these two error-source planes are
separated properly, it may be advantageous to achieve a more stable
subgridding scheme minimizing accuracy degradation. This is the basic
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motivation for this paper which presents a new nonuniform sub-grid
mesh configuration.

Hereinafter, a refinement factor of 3 is assumed for simplicity
though other mesh ratios can be applied easily. Also it is noted that
uppercase “E” and “H ” and subscript “m” indicate MG variables,
whereas lowercase “e” and “h” and subscript “s” denote SG variables.
Basically, a nonuniform sub-grid mesh is generated by embedding a
nonuniform mesh with denser resolution within a uniform coarse mesh
region. Consider a simple 2-D problem space which is composed of
6∆xm × 6∆ym MG uniform cells, and suppose that finer mesh is
necessary in the central region of 2∆xm×2∆ym. A typical nonuniform
mesh and a uniform sub-grid are shown in Figs. 1(a) and 1(b),
respectively. In Fig. 1, gray lines represent main meshes and dashed
lines represent sub meshes, while overlapping meshes between main
and sub meshes are illustrated by black solid lines.

As shown in Fig. 1(a), a nonuniform mesh doesn’t have any sub
region, but the problem space is composed of only one main grid which
is meshed nonuniformly. On the other hand, Fig. 1(b) has a uniform-
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Figure 1. Comparison of three different mesh configurations,
(a) nonuniform mesh, (b) uniform sub-grid mesh, (c) nonuniform sub-
grid mesh, and (d) 3-D illustration of the nonuniform sub-grid mesh
region.
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Figure 2. Extension of the nonuniform sub-grid mesh to a sub-grid
region with a re-entrant corner, (a) a straightforward composition, and
(b) an alternative composition.

grid main mesh, and a local part of entire domain is defined as another
uniform-grid region having finer resolution. Based on the mesh schemes
in Figs. 1(a) and 1(b), it is possible to construct a different sort of sub-
grid mesh, which is shown in Fig. 1(c). We call this a nonuniform sub-
grid (NSG), and its three-dimensional illustration is shown in Fig. 1(d).
The NSG mesh configuration can be expanded to more complex cases
such as a sub-grid region with re-entrant corners. For instance, an
L-shaped region can be replaced by three separated NSG meshes.
Fig. 2(a) depicts the straightforward combination of three rectangular
sub-grids. If the uniform mesh transition around an overlapping region
is preferred for lower numerical dispersion, the combination shown in
Fig. 2(b) can be considered. But special treatment is required to obtain
four SG h-field components located within an overlapping cell.

Unlike a conventional uniform sub-grid (USG) mesh, the NSG
mesh can separate the interpolation-error and dislocation-error planes.
This advantageous feature is illustrated in Fig. 3, where solid
and dashed lines outside the meshes denote where dislocation
and interpolation errors occur, respectively. In the NSG mesh
configuration, interpolation and dislocation errors are separated as
shown in Figs. 3(c) and 3(d), while they coincide at the same plane
and are added up together at the interface in the USG mesh as shown
in Figs. 3(a) and 3(b). Furthermore, two error-source planes are
completely separated in the NSG with H -coupling (NSG-H ), whereas
two errors are mingled in the updating of SG h-fields between two
error planes in the NSG with E -coupling (NSG-E ). Therefore, the new
NSG-H scheme provides a greatly increased stability margin and it will
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Figure 3. Separation of interpolation and dislocation errors in
a nonuniform sub-grid mesh configuration, (a) uniform sub-grid
with E -coupling (USG-E ), (b) uniform sub-grid with H -coupling
(USG-H ), (c) nonuniform sub-grid with E -coupling (NSG-E ), and
(d) nonuniform sub-grid with H -coupling (NSG-H ).

be verified in numerical experiments that a late-time stable solution
can be achieved without implementing the strict coupling symmetry
condition.

3. NONUNIFORM SUBGRIDDING ALGORITHM

Advantageous features of the uniform subgridding schemes [3–10] are
inherited for the development of a new robust subgridding scheme.
The nearest neighbor interpolation is used as the consistent coupling
method in time [3]. To be able to get rid of instability factor in time
and to facilitate the implementation of a stable subgridding scheme,
the separation of temporal and spatial interface [6] is also adopted in
the NSG scheme. Based on temporal and spatial coupling schemes,
similar recursive updating algorithms to [3, 4, 6] can be used. Special
treatments due to the new NSG mesh configuration are required only
in the spatial coupling algorithm, and they are explained with respect
to MG E -field and H -field couplings in the following sections.

3.1. Nonuniform Subgridding Scheme with E-coupling

In the NSG-E scheme, interpolation for obtaining missing SG e-
fields, which is often called forward coupling, is performed piecewise-
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constantly [7] in a tangential direction (TC). A piecewise-linear
method is used in a normal direction (NL) to E -field directions. The
constant and linear interpolation is referred to as a TCNL method
here. It is noted that the TCNL method can overcome material
discontinuities across the interface boundary because interpolation
execution is confined within one MG cell.

Consider TCNL interpolation near the facet position of the MG-
SG interface box. Fig. 4 shows electric field components and their
couplings on the x-z interface plane, i.e., the front face of the 3-D
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interface box. TCNL forward coupling at the interface facet position
can be divided into TC

3 NL
5 and TC

3 NL
3 by the number of SG e-

field components interpolated from one MG E -field sample. In the
uniform SG area, one E -field sample has influence tangentially on 3
SG components and normally on 5 SG components. In the non-uniform
SG area, a MG E -field sample is utilized for the interpolation of only
3 SG components along the normal direction. Two forward coupling
schemes are illustrated with normal and tangential coupling coefficients
in Figs. 4(b) and 4(c). If this fact is considered properly, the other
process of the consistent coupling will be preceded with ease.

As pointed out in [3–6], backward coupling, which determines
missing MG H -fields from calculated SG h-field components, is
required to be symmetric to the TCNL forward coupling in order to
avoid late-time instability. Fig. 5 depicts the symmetric backward
coupling. Note that the consistent coupling can be accomplished easily
because any dislocation error does not appear in the coupling process.
In Fig. 5, the updating equation for En+1

x (I, J,K) is given as,

En+1
x (I, J,K) = Cexe(I, J,K)× En

x (I, J,K)

+Cexhy(I, J,K)×
[
H

n+ 1
2

y (I, J,K)−H
n+ 1

2
y (I, J,K−1)

]

+Cexhz(I, J,K)×
[
H̃

n+ 1
2

z (I, J,K)−H
n+ 1

2
z (I, J−1, K)

]
, (1)

where updating coefficients are denoted by C(I, J,K), and the details
can be seen in [1]. An unknown MG H -field component is denoted
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Figure 5. TCNL forward and backward couplings in a nonuniform
subgridding scheme.



146 Kim et al.

by H̃
n+ 1

2
z (I, J,K), which is determined by the backward coupling that

takes the average of relevant SG h-field components in a consistent
way. The symmetric backward coupling can be expressed using general
matrix-form arrays, such as a forward coupling coefficient matrix T
along a tangential direction, a forward coupling coefficient matrix N

along a normal direction, an associated SG h-field matrix [[h
n+ 1

2
z ]], and

normalizing factor G as,

H̃
n+ 1

2
z (I, J,K) = GK,z

CL,F × TT ·
[[

h
n+ 1

2
z

]]
· NT . (2)

The forward coupling coefficient matrix T and N are transposed in
the backward coupling. This is a key factor to achieve a symmetric
backward coupling as explained in [6]. Equation (2) can be rewritten
as (3)–(4) and (5)–(6) in accordance with TC

3 NL
5 and TC

3 NL
3 forward

couplings, respectively.

H̃
n+ 1

2
z (I, J,K) = GK,z

CL,F35 ×
[ 1

1
1

]T

×



h(−1,j,−2) h(−1,j,−1) h(−1,j,0) h(−1,j,1) h(−1,j,2)

h(0,j,−2) h(0,j,−1) h(0,j,0) h(0,j,1) h(0,j,2)

h(1,j,−2) h(1,j,−1) h(1,j,0) h(1,j,1) h(1,j,2)




n+ 1
2

Z

× [
1
3

2
3 1 2

3
1
3

]T
, (3)

where

GK,z
CL,F35 =

1
Σ3

p=1Σ
5
q=1[T3 × N5]p,q

= 1/9. (4)

H̃
n+ 1

2
z (I, J,K) = GK,z

CL,F35

×
[ 1

1
1

]T

×



h(−1,j,0) h(−1,j,1) h(−1,j,2)

h(0,j,0) h(0,j,1) h(0,j,2)

h(1,j,0) h(1,j,1) h(1,j,2)




n+ 1
2

Z

× [
1 2

3
1
3

]T
, (5)

where
GK,z

CL,F35 =
1

Σ3
p=1Σ

3
q=1[T3 × N3]p,q

= 1/6. (6)

Herein the symmetric coupling scheme is discussed only at the
facet position of 3-D interface box for simplicity. At other positions
such as on an edge, the symmetry can be maintained in a similar way.
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3.2. Nonuniform Subgridding Scheme with H -coupling

In this section, the NSG mesh configuration is combined with MG H -
field interpolation. As shown in Fig. 3(d), the NSG-H scheme can have
a more increased stability margin due to the complete separation of the
two error planes. In addition, interpolation of MG H -field components
allows higher robustness against material discontinuities in case that
non-magnetic dielectric material is used at the interface boundary as
described in [9].

Basically, SG h-field components are interpolated linearly along a
normal direction to the cell facet plane where MG H -field is located.
Interpolation along a normal direction is identical to the method
adopted in the previous NSG-E scheme. For instance, hz components
are approximated linearly in z direction, for z direction is normal to
the x -y cell facet plane.

Along the tangential direction, piecewise-constant interpolation
was used in the NSG-E. This was an inevitable choice because other
more accurate interpolations require more complex backward coupling.
On the other hand, the NSG-H scheme is capable of dealing with
other interpolation methods easily due to its robustness. A number of
numerical experiments reveal that a stable subgridding scheme can be
implemented using more accurate interpolation methods. In addition,
the NSG-H scheme shows no late-time instability for sufficiently long
time period even without the use of complex symmetric backward
coupling scheme.

Among various interpolation techniques, piecewise-constant [7]
and piecewise-quadratic [15] methods are selected by considering
accuracy and efficiency. Other methods such as piecewise-linear
and cubic/shape-preserving spline [15, 16] were also implemented,
but practical simulations yielded some problems due to material
discontinuities by the linear method and efficiency degradation by the
spline methods. We consider two interpolation methods which are
applied to the interpolation of MG H -field along a tangential direction
to the cell facet. The goal is set to approximate the values of the
z -directed h-fields h21, h22, and h23 in Fig. 6 using two interpolation
techniques. The approximation of SG h-field components is simply
given by piecewise-constant method (TC) as

h21 = h22 = h23 = H2. (7)
On the other hand, piecewise-quadratic interpolation (TQ) using a
second order polynomial [15] is given in a general form as

h(x̄) = (2x̄− 1)(x̄− 1)H1 − 4x̄(x̄− 1)H2 + x̄(2x̄− 1)H3, (8)
where x̄ is the normalized position in the range 0 ≤ x̄ ≤ 1, and
H1 = H|x̃=0, H2 = H|x̄=0.5, H3 = H|x̄=1. If (8) is applied to the
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case of refinement factor 3 in Fig. 6, then we have

h21 =
1
9
(8H2 +2H1−H3), h22 =H2, h23 =

1
9
(8H2 +2H3−H1). (9)

Using higher-order interpolation in (9), we can obtain more accurate
results with little increase of computational cost than the piecewise-
constant or -linear method.

The piecewise-constant and piecewise-quadratic interpolation
methods in tangential directions are basically used for the forward
coupling scheme. The implementation of symmetric backward coupling
corresponding to each forward coupling is not trivial especially for
the TQNL method. Fortunately, the NSG-H has a sufficient stability
margin, thus the symmetric backward coupling scheme is substituted
by a simple tangential averaging scheme that ensures equivalence
between MG and SG. For voltage ∆V between nodes A and B in
Fig. 6, the equivalence between MG and SG can be written as∫

L2

~E2 · d~l =
∫

l21

~e21 · d~l +
∫

l22

~e22 · d~l +
∫

l23

~e23 · d~l. (10)

The discretized form of (10) yields a simple backward coupling equation
as

E2 ·∆xm = (e21 + e22 + e23) ·∆xs, E2 = (e21 + e22 + e23). (11)

Based on the simple backward coupling in (11), the NSG-H scheme
employing different tangential interpolation methods are tested in a
couple of examples. Late-time instability is not observed in both
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TCNL and TQNL interpolation methods, and details for stability
tests will be discussed in the Section 4. This is obvious evidence that
the stability margin is increased significantly in the NSG-H scheme.
Furthermore, the scheme can provide accuracy improvement because
it is not following by the symmetry restriction between forward and
backward couplings. Definitely, complex symmetric backward coupling
degrades simulation accuracy and requires more computation time.
Accuracy estimations will be discussed in the following numerical
experiments.

3.3. Accuracy Improvement Using an Optimal Interpolation
Technique

If a sub-domain region is constructed within a problem space, there
exist mainly two kinds of reflections along the main path of wave
propagation, which are reflections from MG to SG and from SG to
MG. Most of the existing subgridding methods give no attention to
the reflection performance difference with respect to two types of
wave propagation at the interface. Only the MG-to-SG reflection
performance is taken into account. In our experience, TQNL and
TCNL result in better performance for the MG-to-SG and the SG-
to-MG propagation modes, respectively. For the MG-to-SG mode,
field information in the MG region is transferred into the SG region
by a certain type of forward coupling at the interface, and reflection
performance directly depends on the accuracy of the interpolation
method. Thus, it is obvious that higher order interpolation methods
perform better than simple ones. On the other hand, field information
is transferred from the SG to the MG region by backward coupling for
the SG-to-MG mode. In the implemented NSG-H scheme, there is no
difference in the backward coupling with respect to each interpolation
method. Reflection performance is determined by the degree of
mismatch between the forward and the backward couplings. For
instance, the constant scheme in (7) is well matched to the backward
coupling in (11), while the quadratic scheme in (9) is less matched to
the same backward coupling. Therefore, the optimal combination of
different interpolation methods such as TQNL and TCNL can yield
more accurate results in the NSG-H scheme as long as each employed
interpolation method can guarantee sufficiently long-term stability.
Evaluation of reflection performance for both MG-to-SG and SG-to-
MG paths is shown in following section.

For an interface with an apparent propagation mode, an optimal
interpolation method can be fixed to TCNL or TQNL based on
predefined geometrical information such as sub-grid, source, and load
locations. The TCNL method is assigned to an interface mainly
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functioning as a radiation boundary (from SG to MG), whereas the
TQNL method is applied to an interface mainly functioning as an
absorbing boundary (from MG to SG). For an interface with a mixed
or ambiguous mode, an adaptive selection of optimal methods can
provide better accuracy. Wave propagation status is monitored in a
real-time manner, and optimal method is selected adaptively. To this
end, energy level of unit cells in MG and SG near the interface is
calculated using approximation [13] as

Wn
(I,J,K) ≈

1
2

[
ε(I,J,K)|Ēn

(I,J,K)|2 + µ(I,J,K)|H̄n
(I,J,K)|2

]
V(I,J,K), (12)

where V(I,J,K) is MG unit cell volume, and Wn
(I,J,K) is the energy

confined in cell (I, J,K) at time step n. Thus, Ēn
(I,J,K) and H̄n

(I,J,K)

are defined at the center of the cell, and averaged in time and space.
Temporal and spatial gradients of the averaged energy are defined as

∇S = W̃n
mg − W̃n

sg, ∇T
mg = W̃n

mg − W̃n−1
mg ,∇T

sg = W̃n
sg −Wn−1

sg , (13)

where W̃n
mg and W̃n

sg represent the averaged energy of cells in MG and
SG regions, respectively. ∇S and ∇T are spatial and temporal energy
gradients. Using the calculated ∇S and ∇T , the boundary status is
determined by following criteria: MG-to-SG if ∇S has the opposite
sign to both ∇T

mg and ∇T
sg, and SG-to-MG if all of them have the same

sign. If the condition is not satisfied, current propagation condition is
followed by the previously determined condition.

Using these strategies in the NSG-H scheme, overall simulation
accuracy can be improved further with a little increase of
computational cost. It is also noted that we do not consider several
well-known methods, discussed in [17] and its references, to compensate
degraded accuracy due to the nonuniform grid in the SG region, since
most of these methods can worsen late-time instability by violating the
reciprocal property or symmetry of the original Yee updating scheme.

4. NUMERICAL EXPERIMENTS

To begin with, late-time stability is examined in a rectangular
resonator (RR). An air-filled region of 9 × 8 × 10mm, whose vertex
points are located at the origin and (9, 8, 10)mm, is surrounded by
PEC plates. A SG region formed by two vertex points of (2, 2, 2)
and (6, 5, 7) mm is embedded within the cavity in an asymmetric way.
The MG cell size is 1 × 1 × 1mm, and the embedded SG region is
initialized by a refinement factor of 3 in the NSG-H scheme. The
circuit is simulated up to 1 million time steps. With CFL factor of 0.9,
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late-time instability was observed within the simulation time period.
By reducing the CFL factor to 0.7, we could remove the sign of late-
time instability for both TCNL and TQNL interpolation methods.

Next, basic reflection performance of the NSG-H scheme is
investigated using an air-filled rectangular waveguide (RW) as in [8, 13].
With a refinement factor of 3, a sub-grid region of 20 × 7 × 20mm
is embedded in a 20 × 7mm RW. Reflection error is computed near
the MG-SG interface. Fig. 7 depicts the reflection performance for
three different discretization sizes. The sub-grid region constructed
in a homogeneous region didn’t show obvious reflection-performance
difference with respect to interpolation methods in the NSG-H scheme.
Considering difference in simulation setups such as the used refinement
factor, we can say that the NSG-H scheme results in comparable
reflection performance to the conservative method [8].

In the following sections, some practical microwave circuits
are simulated in order to validate the improved performance and
robustness of the NSG-H scheme in realistic and general problems.
Along with stability and general applicability, computation efficiency
and accuracy of the proposed subgridding scheme are mainly evaluated
by comparison with results of two reference cases, i.e., entire coarse-
mesh and fine-mesh simulations. The coarse and fine meshes have
the same cell dimensions as those of MG and SG in the subgridding
scheme, respectively. Identical refinement factor of 3 and CFL factor
of 0.9 are used throughout all experiments. All microstrip circuits
are surrounded by an air buffer region of 8 cells except ‘zp’ direction
(12 cells) and the CPML region of 8 cells in all six directions. It
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Figure 7. Computed relative reflection performance of the NSG-H
scheme for three different discretization sizes in a 3-D rectangular
waveguide example.
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is noted that an air buffer region under the ground conductor of a
circuit substrate, which is generally not necessary, is intentionally
added in order to include the contribution of all six interfaces of a
SG region. Results obtained by using frequency-domain commercial
software Sonnet Suites [18] are also provided to confirm validity of the
FDTD simulation.

For a direct comparison of accuracy performance with other
existing subgridding schemes in [3–6], and [8–10], we tried to implement
a few of existing schemes and simulated following examples in the same
conditions, i.e., refinement factor of 3 and CFL factor of 0.9. However,
most of the trials failed to obtain stable and meaningful results. For
instance, schemes in [4–6, 10] showed weakness probably in handling
a thin PEC plate traversing the interface, and schemes in [3, 9, 10]
yielded instable results due to the lack of stability margin when the
same CFL factor was used. Contrarily this implies robustness of the
proposed subgridding scheme.

As a result, accuracy comparison is carried out in an indirect
manner. The NSG-H scheme is compared with other two implemented
schemes. One is the USG-E scheme which was shown in Fig. 3(a), and
it can be regarded as the combination of methods in [6, 8]. The USG
scheme basically uses E -field coupling of TCNL method similar to [8],
and the implicit complex coupling process in [8] is replaced by the
explicit temporal and spatial coupling schemes used in [6]. The other
one is the NSG-E scheme which was shown in Fig. 3(c) and discussed
in the Section 3.1. This method modifies the coupling scheme of the
USG-E suitable for the NSG mesh configuration. It is noted that
both USG-E and NSG-E require the symmetric forward and backward
coupling scheme to avoid late-time instability. By these combinations,
material traverse capability and a sufficient stability margin can be
obtained successfully and they can provide good reference data for
accuracy comparison.

Relative accuracy can be estimated by calculating relative errors
of each simulation result when it is compared with the result of uniform
fine-mesh. For S-parameter results, the relative error metric [19] can
be computed as

εS =

√√√√
∑

k

∑
m

∑
n |Sm,n(fk)− Sref

m,n(fk)|2∑
k

∑
m

∑
n |Sref

m,n(fk)|2
, (14)

where fk is a discrete frequency point, Sm,n the S-parameters resulted
by the simulation of a test case, and Sref

m,n the same S-parameters
resulted by the simulation of the entire fine-mesh reference case.
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4.1. Mitered Corner

To demonstrate applicability of the NSG-H scheme to a general sub-
gridding case with a re-entrant corner, a transmission line having a
mitered corner is simulated using three nonuniform SG regions, which
are embedded within MG region by a refinement factor of 3. Fig. 8
shows the mitered transmission line and its spatial discretization in
terms of coarse mesh or MG mesh. The circuit is constructed on
the Alumina substrate with dielectric constant 9.9 and thickness of
1.016mm. All simulations are performed for 1.32 ns (3000 MG or
coarse-grid time steps, and 9000 SG or fine-grid time steps) with the

voltage source excitation of a Gaussian waveform of Vs = e
−(t−t0)2

τ2 ,
where τ is 8.47 ps and t0 is set to 4.5τ . Algorithms implemented as a
MATLAB code are executed on an Intel Core 2 Duo 2.2 GHz machine
with a 4GB physical memory. Fig. 9 shows the resulted S-parameters
and relative error metrics which are calculated at each frequency point
by errorS(fk) = |Sm,n(fk) − Sref

m,n(fk)|, and Table 1 summarizes the
estimated computation times and relative errors. Fig. 9 and Table 1 are
clearly showing that the NSG-H scheme can be applied to a complex
and realistic case.
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Table 1. Comparison of error metric and CPU time in the mitered
transmission line example.

CPU Time εS

(min) S11 S21 total
Uniform fine-mesh 386.2 - - -

Uniform coarse-mesh 13.4 0.3909 0.1183 0.1304
Three SG regions (NSG-H ) 15.1 0.1700 0.0149 0.0291

4.2. Defected Microstrip Transmission Line

Defected microstrip structures (DMS) have narrowband band-stop
responses similar to spur-line notch filters. Those structures are widely
used as sub parts of distributed circuit blocks because of compactness
and ease of integration. The circuit geometry is shown in Fig. 10(a),
where only uniform coarse-mesh or MG is illustrated. The DMS is
built on a substrate of dielectric constant 2.2, and the problem space
is discretized to MG cells of [∆x,∆y, ∆z] = [0.406, 0.406, 0.265mm],
and SG cells of a third of the MG cell size.

In all tests including fine-mesh, coarse-mesh, and subgridding
cases, a voltage source is excited by a Gaussian waveform of τ =
13.54 ps, and simulations are performed for 1.75 ns, i.e., 3000 MG or
9000 SG time steps.

First of all, the reflection performance difference of TCNL and
TQNL methods with respect to MG-to-SG and SG-to-MG propagation
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source Vs.

modes is verified through the tests shown in Figs. 10(b) and 10(c). The
SG region in Fig. 10(b) includes the load, port 2, and the critical
geometry region that needs finer mesh resolution, so that the ‘yn’
interface is mostly working for the MG-to-SG mode. On the other
hand, the second SG case in Fig. 10(c) embeds the voltage source,
port 1, and the critical geometry region within the SG region. Thus,
the excited wave is mostly propagating from the SG toward the MG
region around the ‘yp’ interface. TCNL interpolation is applied to
other interfaces except the specified ‘yn’ or ‘yp’ interface. For each
case, resulted S11 is compared with the S11 reference obtained by entire
fine-mesh simulation. As summarized in Table 2, TQNL and TCNL

methods show lower reflection errors in the MG-to-SG and SG-to-MG
propagation cases, respectively.

Next, accuracy and efficiency of the NSG-H scheme are evaluated
for the problem setup in Fig. 10(a). For comparison, aforementioned
two subgridding schemes, i.e., USG-E and NSG-E, are also simulated.
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Table 2. Comparison of reflection performance for MG-to-SG and
SG-to-MG wave propagation modes in the DMS example.

MG-to-SG mode
at ‘yn’ interface

SG-to-MG
mode at ‘yp’ interface

Interpolation method εS(S11) Interpolation method εS(S11)
‘yn’ TCNL 0.1177 ‘yp’ TCNL 0.0646
‘yn’ TQNL 0.0905 ‘yp’ TQNL 0.0782

Table 3. Comparison of error metric and CPU Time in the DMS
example.

CPU
Time

εS

(min) S11 S21 total
Uniform fine-mesh 192.7 - - -

Uniform coarse-mesh 10.5 0.4292 0.3416 0.3832
USG with E -coupling (TCNL) 14.4 0.1278 0.0482 0.0923
NSG with E -coupling (TCNL) 14.9 0.1367 0.0381 0.0955

NSG with H -coupling
(Adaptive: yn/yp, elsewhere TCNL)

13.8 0.0801 0.0299 0.0579

In the simulation of the NSG-H, adaptive selection of TCNL and
TQNL is performed at ‘yn’ and ‘yp’ interfaces, whereas interpolation
is fixed to TCNL at the other interfaces. Fig. 11 depicts the resulted
S-parameters and relative error metrics in the frequency range of
12 to 16GHz. Computational efficiency and relative errors of three
subgridding schemes are compared in Table 3. With a slight increase of
computation time, all subgridding schemes yield more accurate results
than the entire coarse-mesh. It is clear that the NSG-H scheme shows
superior performance in accuracy. The accuracy improvement in the
scheme is accomplished by both the optimal interpolation technique
and the increased stability margin, which enables long-term stable
simulations without employing symmetric backward coupling scheme.

4.3. Microstrip Low-pass Filter

The next example is a microstrip low-pass filter (LPF) whose
geometrical dimension is indicated in Fig. 12. The same substrate of
thickness 0.762 mm and dielectric constant 2.2 is used as in [1, 19, 20].
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One sub-grid region is constructed in the central region of the problem
space in order to include most of critical regions having circuit
discontinuities such as T -junctions and open-ends. Similarly, a voltage
source is excited by a Gaussian waveform of τ = 12.71 ps. Simulations
are performed for 1.66 ns, and a relative error metric is calculated using
the resulted S-parameters up to 20 GHz.
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Table 4. Comparison of error metric and CPU time in the LPF
example.

CPU
Time

εS

(min) S11 S21 total
Uniform fine-mesh 530.8 - - -

Uniform coarse-mesh 24.9 0.1771 0.1138 0.1469
USG with E -coupling (TCNL) 43.6 0.1109 0.0254 0.0781
NSG with E -coupling (TCNL) 41.0 0.1140 0.0280 0.0807

NSG with H -coupling
(Adaptive: yn/yp, elsewhere TCNL)

39.2 0.0729 0.0284 0.0540
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Figure 13. Sampled voltages at port 2 in three subgridding schemes
employing a simple backward coupling. Nonuniform subgridding
scheme with H -coupling shows superior stability factor.

In this LPF example, numerical experiments are executed for
sufficiently long time steps to test the generic stability margin of each
subgridding scheme. When the USG-E and the NSG-E employ the
symmetric coupling scheme, each scheme doesn’t show any instability
sign up to 200000 time steps. On the other hand, the USG-E and
the NSG-E show oscillation when the symmetric backward coupling
scheme is intentionally disabled for fair comparison and appropriate
simple averaging schemes are applied. At this case, the USG-E and
the NSG-E yield oscillations at 4500 and 15000 time steps. Fig. 13
depicts voltages sampled at the port 2, and verifies that the stability
factor is effectively enhanced by the NSG mesh, especially with H -
coupling.
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For a similar estimation of computational efficiency and relative
accuracy, performance comparison is shown in Table 4 and Fig. 14.
From Table 4, we can see that the NSG-H scheme yields the most
accurate S-parameter results, whereas the other two schemes show
similar accuracy. In addition, CPU time in the proposed scheme is less
than or equal to that in the others even though additional computation
is included for an adaptive selection algorithm.

5. CONCLUSION

We have proposed a nonuniform sub-grid (NSG) mesh configuration
to increase the stability margin by separating interpolation-error and
dislocation-error planes. The nonuniform subgridding scheme with
H -coupling (NSG-H ) improves simulation accuracy by employing a
simple backward coupling scheme without late-time instability. Its
accuracy is further optimized by applying an adaptive interpolation
technique. The subgridding scheme also enables efficient simulation
using higher factor of the CFL time step limit. Robustness against
material discontinuities at transition interfaces, as well as stability,
accuracy, and efficiency, has been verified by three realistic microstrip
applications.
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