Vol. 130
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-08-06
The Analytic Extraction of the Complex-Valued Coupling Matrix and Its Application in the Microwave Filter Modeling
By
Progress In Electromagnetics Research, Vol. 130, 131-151, 2012
Abstract
The idea behind the coupling matrix identification is to find the coupling matrix corresponding to the measured or designed scattering characteristics of the microwave filter. The typical attitude towards coupling matrix parameter extraction is to use some optimization methods to minimize the appropriate cost function. In this paper we concentrate on the analytic solutions - how they may be found and their application in further optimization processes. In general case the suggested method generates complex-valued coupling matrix. For a special case of the filter without cross-couplings we give fast and simple recursive method of finding such complex-valued coupling matrix. The method is based on Laplace's formula for expanding the determinant. The complex-valued coupling matrix is used as a good starting point for the optimization methods to find the regular coupling matrix. The examples are presented showing that the optimization arrives to global minimum starting from real parts of complex-valued entries considerably more often than when the starting point is selected randomly.
Citation
Jacek Gulgowski, and Jerzy Julian Michalski, "The Analytic Extraction of the Complex-Valued Coupling Matrix and Its Application in the Microwave Filter Modeling," Progress In Electromagnetics Research, Vol. 130, 131-151, 2012.
doi:10.2528/PIER12061512
References

1. Atia, E. and A. E. Williams, "Narrow-bandpass waveguide filters," IEEE Trans. Microwave Theory & Tech., Vol. 20, 258-265, April 1972.
doi:10.1109/TMTT.1972.1127732

2. Atia, E. and A. E. Williams, "Narrow-band multiple-coupled cavity synthesis," IEEE Trans. Circuits Syst., Vol. 21, 649-655, September 1974.
doi:10.1109/TCS.1974.1083913

3. Wang, R., J. Xu, C. L. Wei, M.-Y. Wang, and X.-C. Zhang, "Improved extraction of coupling matrix and unloaded Q from S-parameters of lossy resonator filters," Progress In Electromagnetics Research, Vol. 120, 67-81, 2011.

4. Xiao, K., L. F. Ye, F. Zhao, S.-L. Chai, and J. L.-W. Li, "Coupling matrix decomposition in designs and applications of microwave filters ," Progress In Electromagnetics Research, Vol. 117, 409-423, 2011.

5. Corrales, E., P. de Paco, and O. Menendez, "Direct coupling matrix synthesis of bandstop filters," Progress In Electromagnetics Research Letters, Vol. 47, 85-91, 2011.
doi:10.2528/PIERL11091512

6. Cameron, R. J., C. M. Kudsia, and R. R. Mansour, Microwave Filters For Communication Systems, J. Wiley & Sons, 2007.

7. Razalli, M. S., A. Ismail, M. A. Mahdi, and M. N. Hamidon, "Novel compact `via-less' ultra-wide band filter utilizing capacitive microstrip patch ," Progress In Electromagnetics Research, Vol. 91, 213-227, 2009.
doi:10.2528/PIER09020403

8. Mo, S. G., Z. Y. Yu, and L. Zhang, "Design of triple-mode bandpass filter using improved hexagonal loop resonator," Progress In Electromagnetics Research, Vol. 96, 117-125, 2009.
doi:10.2528/PIER09080304

9. Ye, C. S., Y. K. Su, M. H. Weng, C. Y. Hung, and R. Y. Yang, "Design of the compact parallel-coupled lines wideband bandpass filters using image parameter method," Progress In Electromagnetics Research, Vol. 100, 153-173, 2010.
doi:10.2528/PIER09073002

10. Zhang, L., Z. Yu, and S. Mo, "Novel planar multimode bandpass filters with radial-line stubs," Progress In Electromagnetics Research, Vol. 101, 33-42, 2010.
doi:10.2528/PIER09121303

11. Huang, J.-Q. and Q.-X. Chu, "Compact UWB band-pass filter utilizing modified composite right/left-handed structure with cross coupling ," Progress In Electromagnetics Research, Vol. 107, 179-186, 2010.
doi:10.2528/PIER10070403

12. Chiou, Y.-C., P.-S. Yang, J.-T. Kuo, and C.-Y.Wu, "Transmission zero design graph for dual-mode dual-band filter with periodic stepped-impedance ring resonator ," Progress In Electromagnetics Research, Vol. 108, 23-36, 2010.
doi:10.2528/PIER10071608

13. Lopez-Garcia, B., D. V. B. Murthy, and A. Corona-Chavez, "Half mode microwave filters based on epsilon near zero and mu near zero concepts," Progress In Electromagnetics Research, Vol. 113, 379-393, 2011.

14. Vegesna, S. and M. Saed, "Novel compact dual-band bandpass microstrip filter," Progress In Electromagnetics Research B, Vol. 20, 245-262, 2010.
doi:10.2528/PIERB10012210

15. Cameron, R. J., "Advanced coupling matrix synthesis techniques for microwave filter," IEEE Trans. Microwave Theory & Tech., Vol. 51, No. 1, 1-10, 2003.
doi:10.1109/TMTT.2002.806937

16. Cameron, R. J., "General coupling matrix synthesis methods for Chebyshev filtering functions," IEEE Trans. Microwave Theory & Tech., Vol. 47, No. 4, 433-442, 1999.
doi:10.1109/22.754877

17. Harscher, P., R. Vahldieck, and S. Amari, "Automated filter tuning using generalized low-pass prototype networks and gradient-based parameter extraction," IEEE Trans. Microwave Theory & Tech., Vol. 49, No. 12, 2532-2538, 2001.
doi:10.1109/22.971646

18. Meng, W. and K.-L. Wu, "Analytical diagnosis and tuning of narrowband multicoupled resonator filters," IEEE Trans. Microwave Theory & Tech., Vol. 54, No. 10, 3765-3771, 2006.
doi:10.1109/TMTT.2006.881623

19. Ma, H., D. Yang, and J. Zhou, "Improved coupling matrix extracting method for Chebyshev coaxial-cavity filter," PIERS Proceedings, 36-41, Xi'an, China, March 22-26, 2010.

20. Michalski, J. J., "Inverse modelling in application for sequential filter tuning," Progress In Electromagnetics Research, Vol. 115, 113-129, 2011.

21. Wang, R. and J. Xu, "Extracting coupling matrix and unload Q from scattering parameters of lossy filters," Progress In Electromagnetics Research, Vol. 115, 303-315, 2011.

22. Cameron, R. J., J.-C. Faugere, F. Roullier, and F. Seyfert, "Exhaustive approach to the coupling matrix synthesis problem and application to the design of high degree asymmetric filters ," International Journal of RF and Microwave Computer-Aided Engineering , Vol. 17, No. 1, 4-12, January 2007.
doi:10.1002/mmce.20190

23. Kozakowski, P., A. Lamecki, P. Sypek, and M. Mrozowski, "Eigenvalue approach to synthesis of prototype filters with source/load coupling," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 2, 98-100, 2005.
doi:10.1109/LMWC.2004.842838

24. Lamecki, A., P. Kozakowski, and M. Mrozowski, "Fast synthesis of coupled-resonators filters," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 4, 174-176, 2004.
doi:10.1109/LMWC.2004.827111

25. Lamecki, A., P. Kozakowski, and M. Mrozowski, "Fast extraction of coupling matrix for optimization and CAD tuning problems," 34th European Microwave Conference, Vol. 3, 1385-1388, Amsterdam, 2004.