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Abstract—The idea behind the coupling matrix identification is
to find the coupling matrix corresponding to the measured or
designed scattering characteristics of the microwave filter. The typical
attitude towards coupling matrix parameter extraction is to use some
optimization methods to minimize the appropriate cost function. In
this paper, we concentrate on the analytic solutions — how they may
be found and their application in further optimization processes. In
general case, the suggested method generates complex-valued coupling
matrix. For a special case of the filter without cross-couplings
we give fast and simple recursive method of finding such complex-
valued coupling matrix. The method is based on Laplace’s formula for
expanding the determinant. The complex-valued coupling matrix is
used as a good starting point for the optimization methods to find
the regular coupling matrix. The examples are presented showing that
the optimization arrives to global minimum starting from real parts of
complex-valued entries considerably more often than when the starting
point is selected randomly.

1. INTRODUCTION

The coupling matrix model of microwave filters introduced by Atia and
Williams [1, 2] was widely applied (for latest references and ideas see
e.g., [3–5]) — but mainly to the microwave filter synthesis (see [6] for
an overview). The methodologies for designing microwave filters are
known for a long time but a lot of researchers are still introducing
new solutions (cf. [7–14]). In this paper, we are focusing on the
related problem of coupling coupling matrix extraction. Assuming
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(N + 2) × (N + 2) coupling matrix model (see especially [6] and [15]
for an overview) the problem may be described as: given the reflection
characteristics S11 find the matrix M that satisfies:

S11(λ) = 1 + 2j[λIN − J + M ]−1
1,1 (1)

where J has all entries equal to 0 except J1,1 = JN+2,N+2 = j, while
IN is a diagonal matrix with main diagonal given by (0, 1, 1, . . . , 1, 0).
There are at least two important applications of the coupling matrix
model, where the problem described above appears. The first one is
the filter synthesis: given the designed reflection characteristics we
search for the matrix M that satisfies the Equation (1). In this case,
we have the S11(λ) given directly as the rational function having the
desired properties. When we find the coupling matrix corresponding
to the reflection characteristics, we can translate it into the physical
properties of the device that we are planning to develop. Usually the
time is not critical in the designing process, so we can use different
optimization techniques, test different solutions and if we have many
solutions we can pick the best one. The other important problem that
we have to consider is the filter topology. When we know the filter
topology, we can specify assumptions on matrix M , i.e., point out
the nonzero entries in the matrix. Based on this we can translate
our optimization result into the right configuration, which may be
achieved by some rotations, that do not change eigenvalues of the
matrix (see [15] and [16] for more details). And even in this case, there
are plenty of matrices generating the same reflection characteristics.

The other application is to use the coupling matrix in the filter
tuning process (cf. [3] and [17, 18]) — in this case, we start with given,
real device, with measured reflection characteristics. And based on the
characteristics we find the matrix M . At first glance it looks like the
problem identical to the one discussed in the previous paragraph, but
there are important differences. First of all, we do not have functions
S11(λ) and S12(λ) given directly by some theoretical methods, but
rather approximated (or interpolated) based on the discrete set of
measured samples. Moreover, the time becomes an issue: the filter
tuning process performed in the real production environment should
be as quick as possible. And last but not least, we can usually assume
we know the filter topology, so when looking for the matrix we should
impose some assumptions on the shape of the matrix. We need to
mention that there are plenty of different microwave filter tuning
methods and new solutions are still introduced (see e.g., [19–21]).

Among different attitudes towards the microwave filter tuning the
one that refers to the coupling matrix describing the filter is powered
by the simple idea: generally speaking, we want to have the ideal
coupling matrix M0 of the correctly tuned filter and, based on the
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measured reflection characteristics, the detuned coupling matrix M .
Based on the difference M − M0 we can see which tuning element
(cavity or coupling) must be changed — and how much. The idea
looks simple but there are numerous problems that appear in practical
implementations of this attitude. One of more important is probably
the multitude of matrices that may be found. Depending on the
filter topology it appears that there are many matrices that satisfy
the Equation (1) for the given function S11(λ) — see [22] for some
examples. Having multiple matrices we need to pick the right one
— we have to decide which one should be chosen to be compared
to the reference matrix M0. And there is no obvious criterion to
select one of them. We cannot control this selection process when we
use the optimization techniques to generate M — usually we cannot
be sure if we arrived to some local minimum of the cost function,
and which minimum was chosen by the method we use. Among
the different optimization methods the special role of Levenberg-
Marquardt algorithm should be mentioned (as an example see [23]
and [24]). On the other hand, different cost functions may be used
(see e.g., [19, 23, 24]).

The idea of solving Equations (1) analytically looks quite
appealing in this context. First of all having the closed formula
usually means we have a quick computational method. Additionally,
by understanding the structure of the solution set, we control the
number of solutions and there is a chance we are able to arrange the
solutions somehow, so it is possible to find the solution for the measured
characteristics corresponding to the ideal matrix M0.

The rest of the paper is devoted mainly to analytic formulas for the
coupling matrix identification. At first, we concentrate on the simplest
case: filters without cross-couplings and show that we can always
find the complex-valued coupling matrix corresponding to the given
reflection characteristics. For some filters with more complex topology
the complex-valued coupling matrices corresponding to reflection and
transmission characteristics may also be found analytically. Later we
show how the analytical methods of finding the complex-valued matrix
may be practically applied. The application we point out is to use the
matrix we find as a starting point for the minimalization methods (the
Levenberg-Marquardt and quasi-Newton are considered as examples)
when we search for the regular coupling matrix. We present some
simulations showing how the method works.
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2. FILTERS WITHOUT CROSS-COUPLINGS

When we have the filter with N cavities and no cross-coupling we may
develop very quick recursive method of coupling matrix identification.
First of all we assume, that the matrix is given in the following form

M =




−j R1 0 0 · · · 0 0 0
R1 y1 x1 0 · · · 0 0 0
0 x1 y2 x2 · · · 0 0 0
0 0 x2 y3 · · · 0 0 0
...

. . .
...

0 0 0 0 · · · yN−1 xN−1 0
0 0 0 0 · · · xN−1 yN R2

0 0 0 0 · · · 0 R2 −j




(2)

On the other hand, we have reflection characteristics given as the
rational function

S11(λ) =
λN + aN−1λ

N−1 + . . . + a1λ + a0

λN + bN−1λN−1 + . . . + b1λ + b0
=

A(λ)
B(λ)

(3)

As we can see Equation (1) defines the map

F (R1, R2, x1, . . . , xN−1, y1, . . . , yN )=(a0, . . . , aN−1, b0, . . . , bN−1) (4)

Actually we are interested in inverting the map, i.e., for a given set
of coefficients (a0, . . . , aN−1, b0, . . . , bN−1) we would like to find out
the set of coupling matrix attributes (R1, R2, x1, . . . , xN−1, y1, . . . , yN ).
Moreover, to keep the physical interpretations of the values, we should
assume that all coefficients are real. On the other hand, there are no
clear assumptions on the coefficients (a0, . . . , aN−1, b0, . . . , bN−1), so we
start on assuming that all of them are just complex numbers. Looking
at the problem more formally, we have the map F : R2N+1 → C2N .
The map is clearly polynomial, so its image is a residual subset of C2N .
That is why for almost all coefficients (a0, . . . , aN−1, b0, . . . , bN−1) ∈
C2N the Equation (4) will have no solution at all.

This general setting is quite different from the specific cases
investigated in Chapter 14.1 of [6]. There is given the recursive formula
to generate the coupling matrix without any cross-coupling matching
the desired reflection characteristic. But the formula refers to the
special class of S11 functions being Chebyshev functions. In this case,
we create the coupling matrix matching the required function, but the
function is a result of a theoretical model having requested properties.
In the general case, we cannot assume the rational function is given
by a Chebyshev model. Unfortunately inverting the map F in general
case is not possible, mainly because its image may not be identified
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precisely. We could expect it is (at least almost everywhere) 2N + 1
dimensional real manifold M, but there is not general description of
this manifold.

We will try to attack the problem from some other perspective —
we are going to increase the dimension of the domain of the map F , by
assuming that all of the numbers (R1, Q2, x1, . . . , xN−1, y1, . . . , yN−1)
are complex, where Q2 = −jyN − R2

2. With such attitude we have
the map F : C2N → C2N and we can expect the Equation (4) has the
finite and nonempty set of solutions (at least for “almost all” right-
hand values). Below we will present the description of the effective
method of finding the solutions of this equation. The solutions will be
given by complex numbers in general. We call this generalization of
the regular coupling matrix the complex-valued coupling matrix. Such
complex version of the coupling matrix may possibly be used in certain
applications — especially when we are interested in the differences
between coupling matrix entries for different measurements (what may
be useful in the filter tuning process). The solutions are not unique,
but the values (R2

1, Q2, x
2
1, . . . , x

2
N−1, y1, . . . , yN−1) are. So any two

solutions differ in sign only, and only for some of the variables.
Let us further denote M0(λ) = λI − jR + M . The value in the

first column and the first row of the matrix (M0(λ))−1 is given by

det M11(λ)
detM0(λ)

(5)

where M11(λ) denotes the submatrix of M0(λ), with first row and
column removed. Let Ai(λ) be the determinant of the submatrix
of M0(λ) with first i rows and columns removed. So, following this
convention, A0(λ) = detM0(λ), A1(λ) = detM11(λ) and so on. We
can see that

A0(λ) = −jA1(λ)−R2
1A2(λ) (6)

Continuing the process we see that for i = 1, 2, 3, . . . , N − 1 the
recursive formula may be used:

Ai(λ) = (yi + λ)Ai+1(λ)− x2
i Ai+2(λ) (7)

We arrive to the recursive formulas (6) and (7) by applying Laplace’s
formula for expanding determinant along its columns. Let us take a
look at the sample matrix

Mi =




yi + λ xi 0 · · · 0 0
xi yi+1 + λ xi+1 · · · 0 0
...

. . .
...

0 0 0 · · · yN R2

0 0 0 · · · R2 −j




(8)



136 Gulgowski and Michalski

Then detMi = (yi + λ) detMi+1 − xi det M̃i+1, where

M̃i+1 =




xi xi+1 · · · 0 0
0 yi+2 + λ · · · 0 0
...

...
. . .

...
...

0 0 · · · yN R2

0 0 · · · R2 −j




(9)

Determinant of the matrix M̃i+1 may be again expanded along its
first column according to Laplace’s formula what leads to det M̃i+1 =
xi+1 det Mi+2. This finally leads to the formula (7). Now we have
S11(λ) = 1 + 2j A1(λ)

A0(λ) . Both A0(λ) and A1(λ) are polynomials
of the degree N and we can see that coefficients by λN in both
polynomials are −1 and −j respectively. This implies that highest
degree coefficient of the S11(λ) numerator must be equal to 1 while
the denominator must equal to −1. Hence we need to assume this
when approximating rational function S11(λ). With this assumption
the algorithm described below may be used:

1. Based on the S11(λ) the function A0(λ) is identified as the
denominator of S11(λ). Let us denote the numerator of S11(λ) as B(λ)
and then we calculate

A1(λ) =
B(λ)−A0(λ)

2j
.

2. Now we have the formula resulting from the decomposition of
A0(λ)

A0(λ) = −jA1(λ)−R2
1A2(λ).

We know that the coefficient by λN−1 of A2(λ) equals to −j, and we
already know both polynomials A0(λ) and A1(λ). Hence by comparing
the coefficients by λN−1 on both sides we can find R2

1, and the
polynomial

A2(λ) =
A0(λ) + jA1(λ)

−R2
1

.

3. Now we are in position of knowing two polynomials Ai(λ) and
Ai+1(λ), for i = 1, 2, . . . , N where Ai(λ) is of degree N − i + 1. Based
on the recursive formula

Ai(λ) = (yi + λ)Ai+1(λ)− x2
i Ai+2(λ) (10)

and knowing that highest degree coefficients of all Ai(λ) equal to −j,
we can compare coefficients of λN−i on both sides of (10). This gives
us the value of yi. Knowing yi we can compare coefficients by λN−i−1



Progress In Electromagnetics Research, Vol. 130, 2012 137

to find the value of x2
i . Then we get the polynomial Ai+2(λ) and may

proceed to the next value of i.
4. The last step is slightly different because we have the following

formulas:

AN−1(λ) = (yN−1 + λ)AN (λ)− x2
N−1(−j) (11)

AN (λ) = (yN + λ)(−j)−R2
2 = −jλ + Q2. (12)

Actually, we calculate values of yN−1 and x2
N−1 as in step 3 of this

algorithm but there is no need to calculate AN+1(λ) from (11). On
the other hand as we look at the formula (12) we can see that
AN−1(λ) = −jλ + Q2 and R2

2 = −Re(Q2) while yN = −Im(Q2). The
case of N × N coupling matrix is similar — it just leads to slightly
different algorithm. The recursive formula is basically the same but
its first and last steps are slightly different. We will not discuss it is
details here.

3. CROSS-COUPLINGS AND REFLECTION
CHARACTERISTICS

The case discussed in the previous section is the simplest possible.
When the cross couplings are added to the coupling matrix the
recursive formulas are not valid any more. We can follow them up
to some value of i, but when the row or column with nonzero cross-
coupling is encountered, the recursive formula may not be used any
more. With the reflection characteristics only, there is not enough
information to uniquely recreate the coupling matrix, as it is performed
in the no-cross couplings case.

In order to handle such more complex case the two attitudes may
be suggested:

(1) in case the transmission characteristics S12 is known, the
additional equations may be used and solutions may be searched
analytically, what finally allows to find the coupling matrix (or
matrices);

(2) find the tridiagonal coupling matrix by means of the method
described in the previous section and treat it as the starting point of
some approximation process leading to the coupling matrix of the right
format.

The example of the first method will be given in this section, while
the second idea will be presented and tested in the next section. There
is no general method to find the right coupling matrix analytically but
some solutions of certain specific cases may be suggested. These will
be discussed below.
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The transmission characteristics S12 is related to the coupling
matrix M by the formula

S12(λ) = −2j[λIN − J + M ]−1
N+2,1 (13)

On the other hand the transmission characteristics is known as the
rational function of the form

S12(λ) =
cMλM + cM−1λ

M−1 + . . . + c1λ + c0

λN + bN−1λN−1 + . . . + b1λ + b0
=

C(λ)
B(λ)

(14)

where M depends on the number of transmission zeroes. Let us observe
how this idea may be applied to the sample matrix (N = 4) as given
in the Fig. 10.33(a) on page 394 of [6], i.e.,

M0 =




−j 1.1506 0 0 0 0
1.1506 0.053 1.0394 0 0 0

0 1.0394 0.949 0.7128 0.353 0
0 0 0.7128 −0.4198 0.9777 0
0 0 0.353 0.9777 0.053 1.1506
0 0 0 0 1.1506 −j




(15)

The matrix is rewritten with the input and output reversed, in order
to have the cross-coupling more distanced from the filter’s entry. This
allows for more iterations of the recursive formula (7). The formula
given by the model (1) is derived from the matrix




−j R1 0 0 0 0
R1 y1 + λ x1 0 0 0
0 x1 y2 + λ x2 k1 0
0 0 x2 y3 + λ x3 0
0 0 k1 x3 y4 + λ R2

0 0 0 0 R2 −j




(16)

Following the methods used in the previous section we may create the
following recursive formulas

A0(λ) = −jA1(λ)−R2
1A2(λ) (17)

A1(λ) = (y1 + λ)A2(λ)− x2
1A3(λ) (18)

Following the algorithm described above the values R2
1, y1 and x2

1 may
be found as well as polynomials A2(λ) and A3(λ). Additionally we
know that

A2(λ) =




y2 + λ x2 k1 0
x2 y3 + λ x3 0
k1 x3 y4 + λ R2

0 0 R2 −j


 (19)
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A3(λ) =

(
y3 + λ x3 0

x3 y4 + λ R2

0 R2 −j

)
(20)

The coefficients of polynomials
A2(λ) = −jλ3 + p2λ

2 + p1λ + p0 (21)
A3(λ) = −jλ2 + q1λ + q0 (22)

are known. This leads to the system of equations



R2
2x

2
2−2jk1x2x3+jx2

3y2+jk2
1y3−R2

2y2y3+jx2
2y4−jy2y3y4 =p0

jk2
1+jx2

2+jx2
3 −R2

2y2 −R2
2y3 − jy2y3 − jy2y4 − jy3y4 = p1

−R2
2 − jy2 − jy3 − jy4 = p2

jx2
3 −R2

2y3 − jy3y4 = q0

−R2
2 − jy3 − jy4 = q1

(23)

This system contains too many unknown values to be uniquely solved.
In order to solve it analytically it seems to be a good idea to add to this
system more Equations coming from the transmission characteristics.
We know that the numerator of the reflection characteristics S21 is
given by

C(λ) = −2jR1x1 det

(
x2 k1 0

y3 + λ x3 0
x3 y4 + λ R2

)
(24)

On the other hand the coefficients of C(λ) are known
C(λ) = r1λ + r0 (25)

what leads to additional equations{−2jR1x1(x2x3R2 −R2k1y3) = r0

2jR1x1R2k1 = r1
(26)

The following system of polynomial equations may be solved for all
right-hand side values



R2
2x

2
2−2jk1x2x3+jx2

3y2+jk2
1y3−R2

2y2y3+jx2
2y4−jy2y3y4 =p0

jk2
1+jx2

2+jx2
3−R2

2y2−R2
2y3 − jy2y3 − jy2y4 − jy3y4 = p1

−R2
2 − jy2 − jy3 − jy4 = p2

jx2
3 −R2

2y3 − jy3y4 = q0

−R2
2 − jy3 − jy4 = q1

−2jR1x1(x2x3R2 −R2k1y3) = r0

2jR1x1R2k1 = r1

(27)

We may treat it as the nonlinear equation G(x2, x3, y2, y3, y4, k1, R2) =
(p0, p1, p2, q0, q1, r0, r1), where G : R7 → R7 is given by the left side of
the system (27). The values of x1 and R1 may be treated as known
parameters.

Let us review how this system may be solved analytically:
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(i) From Equations (27.3) and (27.5) the value of y2 may be found;
(ii) From the last equation we can have the value of k1R2, which may

be substituted to Equation (27.6);
(iii) From Equation (27.5) we may have R2

2 as the function of y3 and
y4. It may be substituted to all other equations;

(iv) Equations (27.6) and (27.7) let us represent x2x3 = −αk1+βk1y3

for some constants α, β. This may be applied to Equation (27.1);
(v) Moreover Equation (27.6) may be replaced by the previous

Equation squared, i.e., x2
2x

2
3 = (βk1y3−αk1)2. This may introduce

additional solutions that should be verified against the original
system, but now x2 and x3 appear as x2

2 and x2
3 only;

(vi) Similarly as in (v) we may replace the Equation (27.7) with
k2

1R
2
2 = const.

Now denoting x2
2 = s, x2

3 = t, R2
2 = v, y3 = b, y4 = c, k2

1 = u we
arrive to the following system:




a1t + a2bu + a3b
2 + a4s + a5bs + a6b + a6u = α1

jt + js + a7b + ju + jb2 = α2

jt + a8b + jb2 = α3

−v − jc− jb = α4

a9st− a10u + a11bu− a12b
2u = α5

uv = α6

(28)

for some constant values ai and αj . Now from Equations (28.1), (28.2)
and (28.3) we may find t, u, s as a rational function of b. These values
introduced into Equation (28.5) give us the polynomial equation on
b (of degree not exceeding 4). When the Equation (28.5) is solved
for each solution we have the value of s, t, u, v and c. Following the
procedure described above and assuming the values pi, qi, ri are taken
from the matrix (15) we have the solutions listed below. The values
y2 = 0.949, y3 = −0.4198, y4 = 0.053 appear in each solution. The rest
of variables takes the following values:

x2 = −0.7128, x3 = 0.9777, R2 = −1.1506, k1 = −0.353
x2 = 0.7128, x3 = −0.9777, R2 = −1.1506, k1 = −0.353
x2 = −0.7128, x3 = −0.9777, R2 = 1.1506, k1 = 0.353
x2 = 0.7128, x3 = 0.9777, R2 = 1.1506, k1 = 0.353

It should be observed that all of the solutions listed here generate the
same scattering characteristics. Additionally, it may be observed that
for the point corresponding to the investigated matrix M0 the Jacobian
of the map G is nonzero. Similarly for each of the above solutions
what means that in the neighborhood of each of these solutions the
system (27) may be solved uniquely.
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4. THE COUPLING MATRIX EXTRACTION

Let us start with the more formal definition of the coupling matrix
extraction problem. Assume the transmission characteristics is given
as a sequence of points (λi, Si), i = 1, 2, . . . , N . We would like to find
entries of the coupling matrix M such that the function given by the
formula (1) matches the discrete set of samples in an optimal way.
Starting from this point we may select different strategies. So here is
what we can do:

(i) Choose the appropriate cost function, such that its minimum
corresponds to coupling matrix coefficients that we are looking for.
Between different choices of the cost functions probably the most
natural is

J =
N∑

i=1

|S11(λi)− Si|2 (29)

as used in [16]. The cost function J that we are going to minimize
depends on the coupling matrix coefficients. The function is smooth
so we may use different optimization procedures including Levenberg-
Marquardt algorithm, that we used in tests described below.

(ii) One may also choose different strategy. In the first step,
we find the rational function that matches the discrete sample data.
This may be achieved by means of different methods including
least squares/total least squares modification of Cauchy interpolation
schema. Having the rational function we may look for coupling
matrix coefficients that match the rational function according to the
formula (1). Here we may use procedures described in previous sections
but we can see that the coupling matrix calculated according to this
procedure may have nonreal entries. But when we have the function
that matches the data being the result of the measurement it may
happen that the coupling matrix has nonreal entries and we are losing
the physical interpretation of its values. So when we choose the
rational function we almost always select the function that does not
have the corresponding real-valued coupling matrix. With complex-
valued coupling matrix we do not have this problem — as we can see
in calculations given in the previous section, for any rational function
we find at least one complex-valued coupling matrix. In case we
simplify the model to the no-cross couplings case the values of matrix
coefficients are given by simple recursive formulas, so the calculations
are very quick.

We can see that both attitudes have some drawbacks. Optimiza-
tion methods may appear to be time consuming and do not guarantee
that we arrive to the global minimum (the one we are looking for). On
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the other hand the analytical methods may be specified by precise for-
mulas (at least in some cases), so are quick and accurate, but lead us
to some complex-valued coupling matrices that do not correspond di-
rectly to physical properties of the microwave filter. Below the method
merging the two attitudes is described.

We will have a look at several examples of different filters, starting
from relatively simple ones — with small order (N = 4) and only
one cross-coupling — to more complex cases. We will show that our
methods will be of great help in the optimization process in these cases.
It always does better then random selection of the starting point, and
when filter order increases the method gets even better (relative to
random starting point selection).

We perform a series of tests. Each test starts with certain coupling
matrix. We use matrices reported in several papers — as described
below. We use them to simulate the situations that might be met in
the filter tuning process. Here we cannot assume that we have filter
described by ideally tuned coupling matrix but rather by a matrix
with some entries distorted. For some tests we will need a set of 1000
randomly selected matrices Mi (i = 1, 2, . . . , 1000) differing from M
by random distortion, independently on each nonzero entry of M with
normal distribution of mean value 0 and standard deviation equal to
0.1. This distortion simulates the detuned filter. Fig. 1 shows the
sample distortion for one of the filters used in our tests.

Reference test. We take the given coupling matrix, then
generate S11(λ) characteristics, sample it at 512 points. Based on these
points we build the cost function and call the nonlinear optimization
method with randomly selected starting points. Two methods are used:
Levenberg-Marquardt and quasi-Newton. For each method and given
starting point we perform 300 iterations of the method. Starting points
are selected from [−1, 1] interval according to the uniformly distributed
random variable.

The following test cases are performed as reference tests:
(A) the cost function corresponding to the reference (ideal)

coupling matrix is concerned with starting point selected randomly
form [−1, 1] interval;

(B) for each matrix Mi we create the separate cost function with
starting point is selected randomly from [−1, 1] interval.

Method test. For each distorted matrix Mi we create set of 512
sample values, recreate rational function S11(λ), find complex-valued
coupling matrix and then use its real parts as starting point of the
Levenberg-Marquardt or quasi-Newton approximation. We check how
often we arrive to the coupling matrix that is close to the one that we
started from.
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4.1. Test Case 1: N = 4

Now we will focus on the same sample matrix as given in Section 3
above, i.e., matrix given in the Fig. 10.33(a) on page 394 of [6]:

M0 =




−j 1.1506 0 0 0 0
1.1506 0.053 1.0394 0 0 0

0 1.0394 0.949 0.7128 0.353 0
0 0 0.7128 −0.4198 0.9777 0
0 0 0.353 0.9777 0.053 1.1506
0 0 0 0 1.1506 −j




(30)

This matrix is the starting point of the experiment. It is used to
generate the discrete set of samples of the function S11(λ), as given
by the formula (1). We treat this discrete set of complex numbers
as the representation of the reflection characteristics. Starting from
this reflection characteristics the coupling matrix is recreated. The
expected result is the original coupling matrix, of course, but it is not
always the case.

The complex-valued matrix given by the procedure described in

normalized frequency

S
  

  
 (

d
B

)
1

1

Figure 1. Sample S11 distortion for randomly generated matrix.
Example used in test case 1. Dashed line corresponds to the basic
characteristic, solid to distorted.
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Table 1. Percentage of successful optimization processes for N = 4.

Test Levenberg-Marquardt Quasi-Newton

A 12.1% 86.0%
B 10.4% 84.0%

Method test 79.6% 92.9%

the previous section is as follows


−j 1.1506 0 0 0 0
1.1506 0.053 1.039 0 0 0

0 1.0394 0.949 0.795 0 0
0 0 0.795 0.4451− 0.261j 0.781− 0.526j 0
0 0 0 0.781− 0.526j −0.818 1.031
0 0 0 0 1.031 −j




(31)

Now starting from the model (1) the appropriate for-
mula is derived from the matrix (16). To write the formula
we need to know the filter topology. Then the cost function
J(x1, x2, x3, y1, y2, y3, y4, k1, R1, R2) as given by (29) is used. The real
parts of the complex-valued coupling matrix are used as a starting
point of the minimization process. The optimization should arrive
to expected result, i.e., the real-valued coupling matrix that was our
starting point. The number of successful attempts is presented in the
Table 1.

Let us present the results of our tests in the Table 1. We can see
that the chance to arrive to a right minimum is highest when we start
from the complex-valued matrix. When we start from the randomly
selected values (even in the neighborhood of the ideal matrix) the
chance is always lower.

4.2. Test Case 2: N = 6

The initial matrix M0 is taken from [17] given by



−j 1.037 0 0 0 0 0 0
1.037 0 0.869 0 0 0 0 0

0 0.869 0 −0.614 0 0 0 0
0 0 −0.614 0 0.555 0 −0.168 0
0 0 0 0.555 0 0.723 0 0
0 0 0 0 0.723 0 0.826 0
0 0 0 −0.168 0 0.826 0 1.037
0 0 0 0 0 0 1.037 −j




(32)

And the corresponding complex valued matrix is given by
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Table 2. Percentage of successful optimization processes for N = 6.

Test Levenberg-Marquardt Quasi-Newton

A 1.5% 12.0%

B 0.2% 12.5%

Method test 28.0% 49.2%




−j 1.037 0 0 0 0 0 0
1.037 0 0.869 0 0 0 0 0

0 0.869 0 0.614 0 0 0 0
0 0 0.614 0 0.58 0 0 0
0 0 0 0.58 −0.09j 0.341 0 0
0 0 0 0 0.341 3.09j 3.687 0
0 0 0 0 0 3.687 0 2.019
0 0 0 0 0 0 2.019 −j




(33)

In this case, we can also see the chance to arrive to a right
minimum is highest when we start from the complex-valued matrix
(Table 2).

4.3. Test Case 3: N = 8

The initial matrix M0 is taken from [25]. It is given by



−j 1.0283 0 0 0
1.0283 0.2256 0.7541 0 0

0 0.7541 −0.024 0.5371 0
0 0 0.5371 0.0499 0.4741
0 0 0 0.4741 −0.0049
0 0 0 0 0.6531
0 0 0 −0.1581 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
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0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 −0.1581 0 0 0

0.6531 0 0 0 0
−0.0042 0.4745 0 0 0
0.4745 0.0509 0.5377 0 0

0 0.5377 −0.0238 0.7543 0
0 0 0.7543 0.2244 1.0284
0 0 0 1.0284 −j




(34)

The corresponding complex-valued matrix entries are given by:

M1,2 = 1.028 M2,2 = 0.226
M2,3 = 0.754 M3,3 = −0.024
M3,4 = 0.537 M4,4 = 0.049
M4,5 = 0.5 + 0.001j M5,5 = 0.005
M5,6 = 0.502− 0.006j M6,6 = −0.061− 0.018j

M6,7 = 0.482 + 0.019j M7,7 = 0.135− 0.159j
M7,8 = 0.125− 0.323j M8,8 = −1.595− 3.172j

M8,9 = 2.849− 1.617j M9,9 = 0.871 + 1.156j
M9,10 = 0.382 + 1.141j

(35)

The results of this test case are presented in Table 3. As we can see,
the chance to arrive to a right minimum is highest when we start from
the complex-valued matrix. In all other cases, the chance is practically
zero.

4.4. Test Case 4: Physical Device N = 6

The coupling matrix extraction method was tested for the physical
filter with N = 6 cavities and topology presented in Fig. 2. This is
900MHz filter being the RX part of the combiner.

Table 3. Percentage of successful optimization processes for N = 8.

Test Levenberg-Marquardt Quasi-Newton

A 0% 1.9%
B 0% 1.8%

Method test 12.8% 34.4%
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Figure 2. Topology of the filter used in the experiment. The dashed
line shows the cross-coupling between cavities 2 and 5.

Table 4. Complex-valued coupling matrix entries.

Tuned Detuned

M22 −1.73 + 2.2j −1.32 + 2.23j
M33 −0.359 + 0.197j −0.501 + 0.263j
M44 2.61− 0.651j 2.58− 0.704j

M55 2.06− 0.521j 2.1− 0.475j

M66 2.95 + 0.169j 2.88 + 0.157j

M77 1.69 1.65

Tuned Detuned

M12 1.43− 0.255j 1.38− 0.251j
M23 3.72− 0.794j 3.44− 0.853j
M34 1.07 + 0.173j 1.14 + 0.204j
M45 0.0694− 0.367j 0.056− 0.36j
M56 0.753− 0.214j 0.771− 0.196j

M67 0.187 + 0.182j 0.26 + 0.173j
M78 0.357 0.409

The reflection characteristics S11 was measured in 256 frequency
points for two settings of tuning screws: for the tuned filter and the
filter with the tuning screw corresponding to the first cavity moved up
by 360◦. The two characteristics are presented in Fig. 3.

The complex valued coupling matrices for the tuned and detuned
filter are presented in the Table 4.

The regular real-valued coupling matrix (after the optimization
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process) for the tuned filter is




−i 1.56 0 0 0 0 0 0
1.56 −1.93 3.88 0 0 0 0 0
0 3.88 −0.198 0.642 0 −1.01 0 0
0 0 0.642 2.1 0.467 0 0 0
0 0 0 0.467 3.12 0.756 0 0
0 0 −1.01 0 0.756 4.42 1.42 0
0 0 0 0 0 1.42 3.32 0.941
0 0 0 0 0 0 0.941 −i




(36)

The regular real-valued coupling matrix (after the optimization
process) for the detuned filter is




−j 1.54 0 0 0 0 0 0
1.54 −1.89 3.72 0 0 0 0 0
0 3.72 −0.362 0.682 0 −0.977 0 0
0 0 0.682 2.11 0.479 0 0 0
0 0 0 0.479 3.09 0.704 0 0
0 0 −0.977 0 0.704 4.21 1.39 0
0 0 0 0 0 1.39 3.36 0.957
0 0 0 0 0 0 0.957 −j




(37)

It may be observed that the coupling matrix retrieved from the

normalized frequency

S
   

  (
d

B
)

11

Figure 3. S11 measured for the N = 6 RX filter discussed in test
case 4. Dashed line corresponds to the basic characteristic, solid to
distorted.
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measured data is changed mainly in the neighbourhood of the element
M22, that corresponds to the detuned element.

5. CONCLUSION

In the paper the quick, recursive and analytical method of coupling
matrix extraction is introduced. It is shown that for a given reflection
characteristics we can find many coupling matrices M satisfying
Equation (1). All matrices have the same main diagonal but in the
subdiagonal values differing in sign. In certain situations the method
may be extended to filters with more complex topologies. The coupling
matrix that is extracted may be used in general complex-valued but we
may use it as a starting point of the optimization methods that lead to
the extraction of regular real-valued coupling matrix, corresponding to
the measured reflection characteristics. This starting point selection
does much better then random selection, as we show in examples
presented above.
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