1. Zhang, Y., L. Wu, and S. Wang, "Magnetic resonance brain image classification by an improved artificial bee colony algorithm," Progress In Electromagnetics Research, Vol. 116, 65-79, 2011.
2. Mohsin, S. A., N. M. Sheikh, and U. Saeed, "MRI induced heating of deep brain stimulation leads: Effect of the air-tissue interface," Progress In Electromagnetics Research, Vol. 83, 81-91, 2008.
doi:10.2528/PIER08040504
3. Golestanirad, L., A. P. Izquierdo, S. J. Graham, J. R. Mosig, and C. Pollo, "Effect of realistic modeling of deep brain stimulation on the prediction of volume of activated tissue ," Progress In Electromagnetics Research, Vol. 126, 1-16, 2012.
doi:10.2528/PIER12013108
4. Mohsin, S. A., "Concentration of the specific absorption rate around deep brain stimulation electrodes during MRI," Progress In Electromagnetics Research, Vol. 121, 469-484, 2011.
doi:10.2528/PIER11022402
5. Oikonomou, A., I. S. Karanasiou, and N. K. Uzunoglu, "Phased array near field radiometry for brain intracranial applications," Progress In Electromagnetics Research, Vol. 109, 345-360, 2010.
doi:10.2528/PIER10073004
6. Scapaticci, R., L. Di Donato, I. Catapano, and L. Crocco, "A feasibility study on microwave imaging for brain stroke monitoring," Progress In Electromagnetics Research B, Vol. 40, 305-324, 2012.
7. Asimakis, N. P., I. S. Karanasiou, P. K. Gkonis, and N. K. Uzunoglu, "Theoretical analysis of a passive acoustic brain monitoring system," Progress In Electromagnetics Research B, Vol. 23, 165-180, 2010.
doi:10.2528/PIERB10053112
8. Chaturvedi, C. M., V. P. Singh, P. Singh, P. Basu, M. Singaravel, R. K. Shukla, A. Dhawan, A. K. Pati, R. K. Gangwar, and S. P. Singh, "2.45 GHz (CW) microwave irradiation alters circadian organization, spatial memory, DNA structure in the brain cells and blood cell counts of male mice, mus musculus," Progress In Electromagnetics Research B, Vol. 29, 23-42, 2011.
doi:10.2528/PIERB11011205
9. Emin Tagluk, M., M. Akin, and N. Sezgin, "Classification of sleep apnea by using wavelet transform and artificial neural networks," Expert Systems with Applications, Vol. 37, No. 2, 1600-1607, 2010.
doi:10.1016/j.eswa.2009.06.049
10. Zhang, Y., L. Wu, and G. Wei, "A new classifier for polarimetric SAR images," Progress In Electromagnetics Research, Vol. 94, 83-104, 2009.
doi:10.2528/PIER09041905
11. Camacho, J., J. Picó, and A. Ferrer, "Corrigendum to `The best approaches in the on-line monitoring of batch processes based on PCA: Does the modelling structure matter?' [Anal. Chim. Acta Volume 642 (2009) 59-68]," Analytica Chimica Acta,, Vol. 658, No. 1, 106-106, 2010.
doi:10.1016/j.aca.2009.10.054
12. Chaplot, S., L. M. Patnaik, and N. R. Jagannathan, "Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network," Biomedical Signal Processing and Control, Vol. 1, No. 1, 86-92, 2006.
doi:10.1016/j.bspc.2006.05.002
13. Cocosco, C. A., A. P. Zijdenbos, and A. C. Evans, "A fully automatic and robust brain MRI tissue classification method ," Medical Image Analysis, Vol. 7, No. 4, 513-527, 2003.
doi:10.1016/S1361-8415(03)00037-9
14. Zhang, Y. and L.Wu, "Weights optimization of neural network via improved BCO approach," Progress In Electromagnetics Research, Vol. 83, 185-198, 2008.
doi:10.2528/PIER08051403
15. Yeh, J.-Y. and J. C. Fu, "A hierarchical genetic algorithm for segmentation of multi-spectral human-brain MRI," Expert Systems with Applications, Vol. 34, No. 2, 1285-1295, 2008.
doi:10.1016/j.eswa.2006.12.012
16. Patil, N. S., et al. "Regression models using pattern search assisted least square support vector machines," Chemical Engineering Research and Design, Vol. 83, No. 8, 1030-1037, 2005.
doi:10.1205/cherd.03144
17. Wang, F.-F. and Y.-R. Zhang, "The support vector machine for dielectric target detection through a wall," Progress In Electromagnetics Research Letters, Vol. 23, 119-128, 2011.
18. Xu, Y., Y. Guo, L. Xia, and Y. Wu, "An support vector regression based nonlinear modeling method for Sic mesfet," Progress In Electromagnetics Research Letters, Vol. 2, 103-114, 2008.
doi:10.2528/PIERL07122102
19. Li, D., W. Yang, and S. Wang, "Classification of foreign fibers in cotton lint using machine vision and multi-class support vector machine," Computers and Electronics in Agriculture, Vol. 4, No. 2, 274-279, 201.
20. Gomes, T. A. F., et al. "Combining meta-learning and search techniques to select parameters for support vector machines," Neurocomputing, Vol. 75, No. 1, 3-13, 2012.
doi:10.1016/j.neucom.2011.07.005
21. Hable, R., "Asymptotic normality of support vector machine variants and other regularized kernel methods," Journal of Multivariate Analysis, Vol. 106, 92-117, 2012.
doi:10.1016/j.jmva.2011.11.004
22. Ghosh, A., B. Uma Shankar, and S. K. Meher, "A novel approach to neuro-fuzzy classification," Neural Networks, Vol. 22, No. 1, 100-109, 2009.
doi:10.1016/j.neunet.2008.09.011
23. Gabor, D., "Theory of communication. Part 1: The analysis of information," Journal of the Institution of Electrical Engineers Part III: Radio and Communication Engineering, Vol. 93, No. 26, 429-441, 1946.
24. Zhang, Y. and L. Wu, "Crop classification by forward neural network with adaptive chaotic particle swarm optimization," Sensors, Vol. 11, No. 5, 4721-4743, 2011.
doi:10.3390/s110504721
25. Zhang, Y., S. Wang, and L. Wu, "A novel method for magnetic resonance brain image classification based on adaptive chaotic PSO," Progress In Electromagnetics Research, Vol. 109, 325-343, 2010.
doi:10.2528/PIER10090105
26. Ala, G., E. Francomano, and F. Viola, "A wavelet operator on the interval in solving Maxwell's equations," Progress In Electromagnetics Research Letters, Vol. 27, 133-140, 2011.
doi:10.2528/PIERL11090505
27. Iqbal, A. and V. Jeoti, "A novel wavelet-Galerkin method for modeling radio wave propagation in tropospheric ducts," Progress In Electromagnetics Research B, Vol. 36, 35-52, 2012.
doi:10.2528/PIERB11091201
28. Messina, A., "Refinements of damage detection methods based on wavelet analysis of dynamical shapes," International Journal of Solids and Structures, Vol. 45, No. 14-15, 4068-4097, 2008.
doi:10.1016/j.ijsolstr.2008.02.015
29. Martiskainen, P., et al. "Cow behaviour pattern recognition using a three-dimensional accelerometer and support vector machines," Applied Animal Behaviour Science, Vol. 119, No. 1-2, 32-38, 2009.
doi:10.1016/j.applanim.2009.03.005
30. Bermejo, S., B. Monegal, and J. Cabestany, "Fish age categorization from otolith images using multi-class support vector machines," Fisheries Research, Vol. 84, No. 2, 247-253, 2007.
doi:10.1016/j.fishres.2006.11.021
31. Muniz, A. M. S, et al. "Comparison among probabilistic neural network, support vector machine and logistic regression for evaluating the effect of subthalamic stimulation in Parkinson disease on ground reaction force during gait ," Journal of Biomechanics, Vol. 43, No. 4, 720-726, 2010.
doi:10.1016/j.jbiomech.2009.10.018
32. Bishop, C. M., Pattern Recognition and Machine Learning (Information Science and Statistics), Springer-Verlag New York, Inc., 2006.
33. Vapnik, V., The Nature of Statistical Learning Theory, Springer-Verlag New York, Inc., 1995.
34. Jeyakumar, V., J. H. Wang, and G. Li, "Lagrange multiplier characterizations of robust best approximations under constraint data uncertainty," Journal of Mathematical Analysis and Applications, Vol. 393, No. 1, 285-297, 2012.
doi:10.1016/j.jmaa.2012.03.037
35. Cucker, F. and S. Smale, "On the mathematical foundations of learning," Bulletin of the American Mathematical Society, Vol. 39, 1-49, 2002.
doi:10.1090/S0273-0979-01-00923-5
36. Poggio, T. and S. Smale, "The mathematics of learning: Dealing with data," Notices of the American Mathematical Society (AMS), Vol. 50, No. 5, 537-544, 2003.
37. Acevedo-Rodríguez, J., et al. "Computational load reduction in decision functions using support vector machines," Signal Processing, Vol. 89, No. 10, 2066-2071, 2009.
doi:10.1016/j.sigpro.2009.03.032
38. Deris, A. M., A. M. Zain, and R. Sallehuddin, "Overview of support vector machine in modeling machining performances," Procedia Engineering, Vol. 24, 308-312, 2011.
doi:10.1016/j.proeng.2011.11.2647
39. May, R. J., H. R. Maier, and G. C. Dandy, "Data splitting for artificial neural networks using SOM-based stratified sampling," Neural Networks, Vol. 23, No. 2, 283-294, 2010.
doi:10.1016/j.neunet.2009.11.009
40. Armand, S., et al. "Linking clinical measurements and kinematic gait patterns of toe-walking using fuzzy decision trees," Gait & Posture, Vol. 25, No. 3, 475-484, 2007.
doi:10.1016/j.gaitpost.2006.05.014
41. El-Dahshan, E.-S. A., T. Hosny, and A.-B. M. Salem, "Hybrid intelligent techniques for MRI brain images classification," Digital Signal Processing, Vol. 20, No. 2, 433-441, 2010.
doi:10.1016/j.dsp.2009.07.002
42. Evans, A. C., et al. "Brain templates and atlases," NeuroImage, Vol. 62, No. 2, 911-922, 2012.
doi:10.1016/j.neuroimage.2012.01.024