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Abstract—Automated and accurate classification of MR brain images
is extremely important for medical analysis and interpretation. Over
the last decade numerous methods have already been proposed.
In this paper, we presented a novel method to classify a given
MR brain image as normal or abnormal. The proposed method
first employed wavelet transform to extract features from images,
followed by applying principle component analysis (PCA) to reduce
the dimensions of features. The reduced features were submitted
to a kernel support vector machine (KSVM). The strategy of K-
fold stratified cross validation was used to enhance generalization of
KSVM. We chose seven common brain diseases (glioma, meningioma,
Alzheimer’s disease, Alzheimer’s disease plus visual agnosia, Pick’s
disease, sarcoma, and Huntington’s disease) as abnormal brains, and
collected 160 MR brain images (20 normal and 140 abnormal) from
Harvard Medical School website. We performed our proposed methods
with four different kernels, and found that the GRB kernel achieves
the highest classification accuracy as 99.38%. The LIN, HPOL, and
IPOL kernel achieves 95%, 96.88%, and 98.12%, respectively. We also
compared our method to those from literatures in the last decade,
and the results showed our DWT+PCA+KSVM with GRB kernel
still achieved the best accurate classification results. The averaged
processing time for a 256× 256 size image on a laptop of P4 IBM with
3GHz processor and 2 GB RAM is 0.0448 s. From the experimental
data, our method was effective and rapid. It could be applied to the
field of MR brain image classification and can assist the doctors to
diagnose where a patient is normal or abnormal to certain degrees.
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1. INTRODUCTION

Magnetic resonance imaging (MRI) is an imaging technique that
produces high quality images of the anatomical structures of the human
body, especially in the brain, and provides rich information for clinical
diagnosis and biomedical research [1–5]. The diagnostic values of MRI
are greatly magnified by the automated and accurate classification of
the MRI images [6–8].

Wavelet transform is an effective tool for feature extraction from
MR brain images, because it allows analysis of images at various
levels of resolution due to its multi-resolution analytic property.
However, this technique requires large storage and is computationally
expensive [9]. In order to reduce the feature vector dimensions and
increase the discriminative power, the principal component analysis
(PCA) was used [10]. PCA is appealing since it effectively reduces the
dimensionality of the data and therefore reduces the computational
cost of analyzing new data [11]. Then, the problem of how to classify
on the input data arises.

In recent years, researchers have proposed a lot of approaches for
this goal, which fall into two categories. One category is supervised
classification, including support vector machine (SVM) [12] and k-
nearest neighbors (k-NN) [13]. The other category is unsupervised
classification [14], including self-organization feature map (SOFM) [12]
and fuzzy c-means [15]. While all these methods achieved good results,
and yet the supervised classifier performs better than unsupervised
classifier in terms of classification accuracy (success classification rate).
However, the classification accuracies of most existing methods were
lower than 95%, so the goal of this paper is to find a more accurate
method.

Among supervised classification methods, the SVMs are state-of-
the-art classification methods based on machine learning theory [16–
18]. Compared with other methods such as artificial neural network,
decision tree, and Bayesian network, SVMs have significant advantages
of high accuracy, elegant mathematical tractability, and direct
geometric interpretation. Besides, it does not need a large number
of training samples to avoid overfitting [19].

Original SVMs are linear classifiers. In this paper, we introduced
the kernel SVMs (KSVMs), which extends original linear SVMs to
nonlinear SVM classifiers by applying the kernel function to replace
the dot product form in the original SVMs [20]. The KSVMs allow us
to fit the maximum-margin hyperplane in a transformed feature space.
The transformation may be nonlinear and the transformed space high
dimensional; thus though the classifier is a hyperplane in the high-
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dimensional feature space, it may be nonlinear in the original input
space [21].

The structure of the rest of this paper is organized as follows. Next
Section 2 gives the detailed procedures of preprocessing, including the
discrete wavelet transform (DWT) and principle component analysis
(PCA). Section 3 first introduces the motivation and principles of
linear SVM, and then turns to the kernel SVM. Section 4 introduces
the K-fold cross validation, protecting the classifier from overfitting.
Experiments in Section 5 use totally 160 images as the dataset,
showing the results of feature extraction and reduction. Afterwards,
we compare our method with different kernels to the latest methods in
the decade. Final Section 6 is devoted to conclusions and discussions.

2. PREPROCESSING

In total, our method consists of three stages:

Step 1. Preprocessing (including feature extraction and feature
reduction);
Step 2. Training the kernel SVM;
Step 3. Submit new MRI brains to the trained kernel SVM, and
output the prediction.

As shown in Fig. 1, this flowchart is a canonical and standard
classification method which has already been proven as the best
classification method [22]. We will explain the detailed procedures
of the preprocessing in the following subsections.

Figure 1. Methodology of our proposed algorithm.
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2.1. Feature Extraction

The most conventional tool of signal analysis is Fourier transform (FT),
which breaks down a time domain signal into constituent sinusoids of
different frequencies, thus, transforming the signal from time domain to
frequency domain. However, FT has a serious drawback as discarding
the time information of the signal. For example, analyst can not tell
when a particular event took place from a Fourier spectrum. Thus,
the quality of the classification decreases as time information is lost.

Gabor adapted the FT to analyze only a small section of the signal
at a time. The technique is called windowing or short time Fourier
transform (STFT) [23]. It adds a window of particular shape to the
signal. STFT can be regarded as a compromise between the time
information and frequency information. It provides some information
about both time and frequency domain. However, the precision of the
information is limited by the size of the window.

Wavelet transform (WT) represents the next logical step: a
windowing technique with variable size. Thus, it preserves both time
and frequency information of the signal. The development of signal
analysis is shown in Fig. 2.

Another advantage of WT is that it adopts “scale” instead of
traditional “frequency”, namely, it does not produce a time-frequency
view but a time-scale view of the signal. The time-scale view is a
different way to view data, but it is a more natural and powerful way,
because compared to “frequency”, “scale” is commonly used in daily
life. Meanwhile, “in large/small scale” is easily understood than “in
high/low frequency”.

2.2. Discrete Wavelet Transform

The discrete wavelet transform (DWT) is a powerful implementation of
the WT using the dyadic scales and positions [24]. The fundamentals
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Figure 2. The development of signal analysis.
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of DWT are introduced as follows. Suppose x(t) is a square-integrable
function, then the continuous WT of x(t) relative to a given wavelet
ψ(t) is defined as

Wψ(a, b) =
∫ ∞

−∞
x(t)ψa,b(t)dt (1)

where

ψa,b(t) =
1√
a
ψ

(
t− a

b

)
(2)

Here, the wavelet ψa,b(t) is calculated from the mother wavelet ψ(t)
by translation and dilation: a is the dilation factor and b the
translation parameter (both real positive numbers). There are several
different kinds of wavelets which have gained popularity throughout
the development of wavelet analysis. The most important wavelet is
the Harr wavelet, which is the simplest one and often the preferred
wavelet in a lot of applications [25–27].

Equation (1) can be discretized by restraining a and b to a discrete
lattice (a = 2b & a > 0) to give the DWT, which can be expressed as
follows.

caj,k(n) = DS
[∑

n
x(n)g∗j (n− 2jk)

]

cdj,k(n) = DS
[∑

n
x(n)h∗j (n− 2jk)

] (3)

Here caj,k and cd j,k refer to the coefficients of the approximation
components and the detail components, respectively. g(n) and h(n)
denote for the low-pass filter and high-pass filter, respectively. j and
k represent the wavelet scale and translation factors, respectively. DS
operator means the downsampling. Equation (3) is the fundamental
of wavelet decomposes. It decomposes signal x(n) into two signals,
the approximation coefficients ca(n) and the detail components cd(n).
This procedure is called one-level decompose.

The above decomposition process can be iterated with successive
approximations being decomposed in turn, so that one signal is broken
down into various levels of resolution. The whole process is called
wavelet decomposition tree, shown in Fig. 3.

2.3. 2D DWT

In case of 2D images, the DWT is applied to each dimension separately.
Fig. 4 illustrates the schematic diagram of 2D DWT. As a result, there
are 4 sub-band (LL, LH, HH, and HL) images at each scale. The
sub-band LL is used for next 2D DWT.
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Figure 3. A 3-level
wavelet decomposition
tree.

Figure 4. Schematic diagram of 2D DWT.

The LL subband can be regarded as the approximation component
of the image, while the LH, HL, and HH subbands can be regarded as
the detailed components of the image. As the level of decomposition
increased, compacter but coarser approximation component was
obtained. Thus, wavelets provide a simple hierarchical framework
for interpreting the image information. In our algorithm, level-3
decomposition via Harr wavelet was utilized to extract features.

The border distortion is a technique issue related to digital filter
which is commonly used in the DWT. As we filter the image, the mask
will extend beyond the image at the edges, so the solution is to pad
the pixels outside the images. In our algorithm, symmetric padding
method [28] was utilized to calculate the boundary value.

2.4. Feature Reduction

Excessive features increase computation times and storage memory.
Furthermore, they sometimes make classification more complicated,
which is called the curse of dimensionality. It is required to reduce the
number of features.

PCA is an efficient tool to reduce the dimension of a data set
consisting of a large number of interrelated variables while retaining
most of the variations. It is achieved by transforming the data set to a
new set of ordered variables according to their variances or importance.
This technique has three effects: it orthogonalizes the components
of the input vectors so that uncorrelated with each other, it orders
the resulting orthogonal components so that those with the largest
variation come first, and eliminates those components contributing the
least to the variation in the data set.

It should be noted that the input vectors be normalized to
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have zero mean and unity variance before performing PCA. The
normalization is a standard procedure. Details about PCA could be
seen in Ref. [10].

3. KERNEL SVM

The introduction of support vector machine (SVM) is a landmark
in the field of machine learning. The advantages of SVMs include
high accuracy, elegant mathematical tractability, and direct geometric
interpretation [29]. Recently, multiple improved SVMs have grown
rapidly, among which the kernel SVMs are the most popular and
effective. Kernel SVMs have the following advantages [30]: (1) work
very well in practice and have been remarkably successful in such
diverse fields as natural language categorization, bioinformatics and
computer vision; (2) have few tunable parameters; and (3) training
often involves convex quadratic optimization [31]. Hence, solutions
are global and usually unique, thus avoiding the convergence to local
minima exhibited by other statistical learning systems, such as neural
networks.

3.1. Motivation

Suppose some prescribed data points each belong to one of two classes,
and the goal is to classify which class a new data point will be located
in. Here a data point is viewed as a p-dimensional vector, and our task
is to create a (p−1)-dimensional hyperplane. There are many possible
hyperplanes that might classify the data successfully. One reasonable
choice as the best hyperplane is the one that represents the largest
separation, or margin, between the two classes, since we could expect
better behavior in response to unseen data during training, i.e., better
generalization performance. Therefore, we choose the hyperplane so
that the distance from it to the nearest data point on each side is
maximized [32]. Fig. 5 shows the geometric interpolation of linear
SVMs, here H1, H2, H3 are three hyperplanes which can classify the
two classes successfully, however, H2 and H3 does not have the largest
margin, so they will not perform well to new test data. The H1 has
the maximum margin to the support vectors (S11, S12, S13, S21, S22,
and S23), so it is chosen as the best classification hyperplane [33].

3.2. Principles of Linear SVMs

Given a p-dimensional N -size training dataset of the form

{(xn, yn)|xn ∈ Rp, yn ∈ {−1, +1}} , n = 1, . . . , N (4)
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Figure 5. The geometric interpolation
of linear SVMs (H denotes for the
hyperplane, S denotes for the support
vector).

Figure 6. The concept
of parallel hyperplanes (w
denotes the weight, and b
denotes the bias).

where yn is either −1 or 1 corresponds to the class 1 or 2. Each xn

is a p-dimensional vector. The maximum-margin hyperplane which
divides class 1 from class 2 is the support vector machine we want.
Considering that any hyperplane can be written in the form of

w · x− b = 0 (5)

where · denotes the dot product and W the normal vector to the
hyperplane. We want to choose the W and b to maximize the margin
between the two parallel (as shown in Fig. 6) hyperplanes as large as
possible while still separating the data. So we define the two parallel
hyperplanes by the equations as

w · x− b = ±1 (6)

Therefore, the task can be transformed to an optimization
problem, i.e., we want to maximize the distance between the two
parallel hyperplanes, subject to prevent data falling into the margin.
Using simple mathematical knowledge, the problem can be formulated
as

min
w,b

‖w‖
s.t. yn (w · xn − b) ≥ 1, n = 1, . . . , N

(7)

In practical situations the ‖w‖ is usually be replace by

min
w,b

1
2 ‖w‖2

s.t. yn (w · xn − b) ≥ 1, n = 1, . . . , N
(8)
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Table 1. Three common Kernels (HPOL, IPOL, and GRB) with their
formula and parameters.

Name Formula Parameter

Homogeneous Polynomial (HPOL) k(xi, xj) = (xi · xj)
d d

Inhomogeneous Polynomial (IPOL) k(xi, xj) = (xi · xj + 1)d d

Gaussian Radial Basis (GRB) k(xi, xj) = exp
(−γ||xi − xj ||2

)
γ

The reason leans upon the fact that ‖w‖ is involved in a square root
calculation. After it is superseded with formula (8), the solution will
not change, but the problem is altered into a quadratic programming
optimization that is easy to solve by using Lagrange multipliers [34] and
standard quadratic programming techniques and programs [35, 36].

3.3. Kernel SVMs

Traditional SMVs constructed a hyperplane to classify data, so they
cannot deal with classification problem of which the different types of
data located at different sides of a hypersurface, the kernel strategy is
applied to SVMs [37]. The resulting algorithm is formally similar,
except that every dot product is replaced by a nonlinear kernel
function. The kernel is related to the transform ϕ(xi) by the equation
k(xi, xj) = ϕ(xi)ϕ(xj). The value w is also in the transformed space,
with w =

∑
i αiγiϕ(xi). Dot products with w for classification can

be computed by w · ϕ(x) =
∑

i αiγik(xi, x). In another point of
view, the KSVMs allow to fit the maximum-margin hyperplane in a
transformed feature space. The transformation may be nonlinear and
the transformed space higher dimensional; thus though the classifier
is a hyperplane in the higher-dimensional feature space, it may be
nonlinear in the original input space. Three common kernels [38] are
listed in Table 1. For each kernel, there should be at least one adjusting
parameter so as to make the kernel flexible and tailor itself to practical
data.

4. K-FOLD STRATIFIED CROSS VALIDATION

Since the classifier is trained by a given dataset, so it may achieve
high classification accuracy only for this training dataset not yet other
independent datasets. To avoid this overfitting, we need to integrate
cross validation into our method. Cross validation will not increase
the final classification accuracy, but it will make the classifier reliable
and can be generalized to other independent datasets.
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Figure 7. A 5-fold cross validation.

Cross validation methods consist of three types: Random
subsampling, K-fold cross validation, and leave-one-out validation.
The K-fold cross validation is applied due to its properties as simple,
easy, and using all data for training and validation. The mechanism is
to create a K-fold partition of the whole dataset, repeat K times to
use K − 1 folds for training and a left fold for validation, and finally
average the error rates of K experiments. The schematic diagram of
5-fold cross validation is shown in Fig. 7.

The K folds can be purely randomly partitioned, however,
some folds may have a quite different distributions from other folds.
Therefore, stratified K -fold cross validation was employed, where every
fold has nearly the same class distributions [39]. Another challenge is
to determine the number of folds. If K is set too large, the bias of
the true error rate estimator will be small, but the variance of the
estimator will be large and the computation will be time-consuming.
Alternatively, if K is set too small, the computation time will decrease,
the variance of the estimator will be small, but the bias of the estimator
will be large [40]. In this study, we empirically determined K as
5 through the trial-and-error method, which means that we suppose
parameter K varing from 3 to 10 with increasing step as 1, and then
we train the SVM by each value. Finally we select the optimal K value
corresponding to the highest classification accuracy.

5. EXPERIMENTS AND DISCUSSIONS

The experiments were carried out on the platform of P4 IBM
with 3GHz processor and 2 GB RAM, running under Windows XP
operating system. The algorithm was in-house developed via the
wavelet toolbox, the biostatistical toolbox of Matlab 2011b (The
Mathworks c©). We downloaded the open SVM toolbox, extended it
to Kernel SVM, and applied it to the MR brain images classification.
The programs can be run or tested on any computer platforms where
Matlab is available.
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5.1. Database

The datasets consists of T2-weighted MR brain images in ax-
ial plane and 256 × 256 in-plane resolution, which were down-
loaded from the website of Harvard Medical School (URL:
http://med.harvard.edu/AANLIB/), OASIS dataset (URL: http://
www.oasis-brains.org/), and ADNI dataset (URL: http://adni.loni.uc-
la.edu/). We choose T2 model since T2 images are of higher-contrast
and clearer vision compared to T1 and PET modalities.

The abnormal brain MR images of the dataset consist of
the following diseases: glioma, meningioma, Alzheimer’s disease,
Alzheimer’s disease plus visual agnosia, Pick’s disease, sarcoma, and
Huntington’s disease. The samples of each disease are illustrated in
Fig. 8.

We randomly selected 20 images for each type of brain. Since
there are one type of normal brain and seven types of abnormal brain
in the dataset, 160 images are selected consisting of 20 normal and 140
(= 7 types of diseases ×20 images/diseases) abnormal brain images.
The setting of the training images and validation images is shown in
Table 2 since 5-fold cross validation was used.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. Sample of brain MRIs: (a) normal brain; (b) glioma;
(c) meningioma; (d) Alzheimer’s disease; (e) Alzheimer’s disease with
visual agnosia; (f) Pick’s disease; (g) sarcoma; (h) Huntington’s
disease.

Table 2. Setting of training and validation images (5-fold stratified
cross validation).

Total No. of images
Training (128) Validation (32)

Normal Abnormal Normal Abnormal
160 16 112 4 28
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5.2. Feature Extraction

The three levels of wavelet decomposition greatly reduce the input
image size as shown in Fig. 9. The top left corner of the wavelet
coefficients image denotes the approximation coefficients of level-3,
whose size is only 32× 32 = 1024.

5.3. Feature Reduction

As stated above, the number of extracted features was reduced from
65536 to 1024. However, it is still too large for calculation. Thus,
PCA is used to further reduce the dimensions of features to a higher
degree. The curve of cumulative sum of variance versus the number of
principle components is shown in Fig. 10.

The variances versus the number of principle components from 1
to 20 are listed in Table 3. It shows that only 19 principle components
(bold font in table), which are only 1.86% of the original features, could
preserve 95.4% of total variance.

(a) (b)

Figure 9. The procedures of 3-level 2D DWT: (a) normal brain MRI;
(b) level-3 wavelet coefficients.
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Table 3. Detailed data of PCA.

No. of
Prin. Comp.

1 2 3 4 5 6 7 8 9 10

Variance (%) 42.3 55.6 62.4 68.1 72.3 76.2 79.3 82.1 84.0 85.6
No. of

Prin. Comp.
11 12 13 14 15 16 17 18 19 20

Variance (%) 87.3 88.6 89.8 91.0 92.0 93.0 93.9 94.6 95.4 96.1

Table 4. Confusion matrix of our DWT+PCA+KSVM method
(Kernel chose LIN, HPOL, IPOL, and.

LIN Normal (O) Abnormal (O)
Normal (T) 17 3

Abnormal (T) 5 135
HPOL Normal (O) Abnormal (O)

Normal (T) 19 1
Abnormal (T) 4 136

IPOL Normal (O) Abnormal (O)
Normal (T) 18 2

Abnormal (T) 1 139
GRB Normal (O) Abnormal (O)

Normal (T) 20 0
Abnormal (T) 1 139

(O denotes for output, T denotes for Target)

5.4. Classification Accuracy

We tested four SVMs with different kernels (LIN, HPOL, IPOL, and
GRB). In the case of using linear kernel, the KSVM degrades to original
linear SVM.

We computed hundreds of simulations in order to estimate the
optimal parameters of the kernel functions, such as the order d in
HPOL and IPOL kernel, and the scaling factor γ in GRB kernel. The
confusion matrices of our methods are listed in Table 4. The element of
ith row and jth column represents the classification accuracy belonging
to class i are assigned to class j after the supervised classification.

The results showed that the proposed DWT+PCA+KSVM
method obtains quite excellent results on both training and validation
images. For LIN kernel, the whole classification accuracy was (17 +
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Table 5. Classification accuracy comparison of 10 different algorithms
for the same MRI dataset and same number of images.

Approach from literatures Classification Accuracy (%)
DWT+SOM [12] 94

DWT+SVM with linear kernel [12] 96
DWT+SVM with RBF based kernel [12] 98

DWT+PCA+ANN [41] 97
DWT+PCA+kNN [41] 98

DWT+PCA+ACPSO+FNN [25] 98.75
Approach from this paper Classification Accuracy (%)

DWT+PCA+KSVM (LIN) 95%
DWT+PCA+KSVM (HPOL) 96.88%
DWT+PCA+KSVM (IPOL) 98.12%

DWT+PCA+KSVM (GRB) 99.38%

135)/160 = 95%; for HPOL kernel, was (19 + 136)/160 = 96.88%;
for IPOL kernel, was (18 + 139)/160 = 98.12%; and for the GRB
kernel, was (20 + 139)/160 = 99.38%. Obviously, the GRB kernel
SVM outperformed the other three kernel SVMs.

Moreover, we compared our method with six popular methods
(DWT+SOM [12], DWT+SVM with linear kernel [12], DWT+SVM
with RBF based kernel [12], DWT+PCA+ANN [41], DWT+PCA+k
NN [41], and DWT+PCA+ACPSO+FNN [25]) described in the recent
literature using the same MRI datasets and same number of images.
The comparison results were shown in Table 5. It indicates that our
proposed method DWT+PCA+KSVM with GRB kernel performed
best among the 10 methods, achieving the best classification accuracy
as 99.38%. The next is DWT+PCA+ACPSO+FNN method [25]
with 98.75% classification accuracy. The third is our proposed
DWT+PCA+KSVM with IPOL kernel with 98.12% classification
accuracy.

5.5. Time Analysis

Computation time is another important factor to evaluate the classifier.
The time for SVM training was not considered, since the parameters
of the SVM keep unchanged after training. We sent all the 160 images
into the classifier, recorded corresponding computation time, computed
the average value, depicted consumed time of different stages shown in
Fig. 11.

For each 256 × 256 image, the averaged computation time on
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Figure 11. Computation times at different stages.

feature extraction, feature reduction, and SVM classification is 0.023 s,
0.0187 s, and 0.0031 s, respectively. The feature extraction stage is the
most time-consuming as 0.023 s. The feature reduction costs 0.0187 s.
The SVM classification costs the least time only 0.0031 s.

The total computation time for each 256×256 size image is about
0.0448 s, which is rapid enough for a real time diagnosis.

6. CONCLUSIONS AND DISCUSSIONS

In this study, we have developed a novel DWT+PCA+KSVM method
to distinguish between normal and abnormal MRIs of the brain. We
picked up four different kernels as LIN, HPOL, IPOL and GRB.
The experiments demonstrate that the GRB kernel SVM obtained
99.38% classification accuracy on the 160 MR images, higher than
HPOL, IPOL and GRB kernels, and other popular methods in recent
literatures.

Future work should focus on the following four aspects: First,
the proposed SVM based method could be employed for MR images
with other contrast mechanisms such as T1-weighted, Proton Density
weighted, and diffusion weighted images. Second, the computation
time could be accelerated by using advanced wavelet transforms such
as the lift-up wavelet. Third, Multi-classification, which focuses on
specific disorders studied using brain MRI, can also be explored. Forth,
novel kernels will be tested to increase the classification accuracy.

The DWT can efficiently extract the information from original MR
images with little loss. The advantage of DWT over Fourier Transforms
is the spatial resolution, viz., DWT captures both frequency and
location information. In this study we choose the Harr wavelet,
although there are other outstanding wavelets such as Daubechies
series. We will compare the performance of different families of wavelet
in future work. Another research direction lies in the stationary wavelet
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transform and the wavelet packet transform.
The importance of PCA is demonstrated in the discussion section.

If we omitted the PCA procedures, we meet a huge search space (as
shown in Fig. 10 and Table 3, PCA reduced the 1024 dimensional
search space to 19 dimensional search space) which will cause heavy
computation burden and worsened classification accuracy. There are
some other excellent feature transformation methods such as ICA,
manifold learning. In the future, we will focus on investigating the
performance of these algorithms.

The proposed DWT+PCA+KSVM with GRB kernel method
shows superiority to the LIN, HPOL, and IPOL kernels SVMs. The
reason is the GRB kernel takes the form of exponential function,
which can enlarge the distance between samples to the extent that
HPOL can’t reach. Therefore, we will apply the GRB kernel to other
industrial fields.

There are two different schools of classification. One is while-box
classification, such as the decision-trees or rule-based models. The
readers can extract reasonable rules from this kind of classifiers. For
example, a typical decision tree can be interpreted as “If age is less
than 15, turn to left node, and then if gender is male, then turn to
right node, and . . . ”. Therefore, the white-box classifiers make sense
to patients.

The other school is black-box classification, which means that the
classifier is intuitionistic, so the reader cannot extract reasonable rules
even the kind of classifiers works better and gets higher classification
accuracy than the white-box classifiers. From another point of view,
this kind of classifiers is really designed by “artificial intelligence” or
“computer intelligence”. The computer constructed the classifier using
its own intelligence not the human sense.

Our method belongs to the latter one. Our goal is to construct
a universal classifier not regarding to the age, gender, brain structure,
focus of disease, and the like [42], but merely centering on the
classification accuracy and highly robustness. This kind of classifier
may need further improvements since the patients may need convincing
and irrefutable proof to accept the diagnosis of their diseases.

There are literatures describing wavelet transforms, PCA, and
kernel SVMs. The most important contribution of this paper is
to propose a method which combines them as a powerful tool for
identifying normal MR brain from abnormal MR brain. Meanwhile,
we tested four kernels, and find GRB kernel as the most successful one.
This technique of brain MRI classification based on PCA and KSVM
is a potentially valuable tool to be used in computer assisted clinical
diagnosis.
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