Vol. 132
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-09-29
Statistical Mid-Level Features for Building-Up Area Extraction from Full Polarimetric SAR Imagery
By
Progress In Electromagnetics Research, Vol. 132, 233-254, 2012
Abstract
This paper addresses the problem of designing statistical features for the extraction of building-up areas (BAs) from highresolution polarimetric synthetic aperture radar (PolSAR) imagery. The idea is to represent a building-up area by the distribution of its mid-level components, called intermediates, which are statistical patterns unsupervisedly learnt from PolSAR images. More precisely, by analyzing the structural properties and the polarimetric characteristics exhibited in various terrain types, we propose two kinds of midlevel features for small regions: the cluster based statistical feature (CSF) and the scattering mechanism based statistical feature (SMSF). In detail, for the CSF, the intermediates are the K-mean clusters with Wishart distance of the PolSAR images; for the SMSF, the intermediates are the scattering mechanism categories obtained by relying on a four-component decomposition with deorientation of the PolSAR images. In contrast with existing features for describing BAs, the proposed features, i.e., CSF and SMSF, capture more complex context information of BAs. We compare the proposed features with those based on the Gaussian Markov random field (GMRF) models, which have been proven to be suitable for BAs mapping. Experimental results on RADARSAT-2 datasets demonstrate the effectiveness of the proposed features.
Citation
Wen Yang, Ying Liu, Gui-Song Xia, and Xin Xu, "Statistical Mid-Level Features for Building-Up Area Extraction from Full Polarimetric SAR Imagery," Progress In Electromagnetics Research, Vol. 132, 233-254, 2012.
doi:10.2528/PIER12061009
References

1. Soergel, U., Radar Remote Sensing of Urban Areas, 1st Ed., Springer, Heidelberg, 2010.

2. Stasolla, M. and P. Gamba, "Spatial indexes for the extraction of formal and informal human settlements from high-resolution SAR images," IEEE J. Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 1, No. 2, 98-106, 2008.
doi:10.1109/JSTARS.2008.921099

3. Evans, D. L. and J. J. Van Zyl, "Polarimetric imaging radar: Analysis tools and applications," Progress In Electromagnetics Research, Vol. 103, 371-389, 1990.

4. Jin, Y.-Q., "Polarimetric scattering modeling and information retrieval of SAR remote sensing --- A review of FDU work," Progress In Electromagnetics Research, Vol. 104, 333-384, 2010.
doi:10.2528/PIER10020101

5. Ferro-Famil, L. and E. Pottier, "Dual frequency polarimetric SAR data classification and analysis," Progress In Electromagnetics Research, Vol. 31, 247-272, 2001.
doi:10.2528/PIER00081601

6. Kong, J. A., S. H. Yueh, H. H. Lim, R. T. Shin, and J. J. Van Zyl, "Classification of earth terrain using polarimetric synthetic aperture radar images ," Progress In Electromagnetics Research, Vol. 3, 327-370, 1990.

7. Hu, H. T., Urban land-cover mapping with high-resolution spaceborne SAR data , Ph.D. dissertation, Geoiniformatics KTH, Sweden, Nov. 2010.

8. Niu, X., Multitemporal spaceborne polarimetric SAR data for urban land cover mapping , Ph.D. dissertation, Geoiniformatics KTH, Sweden, Feb. 2011.

9. Reigber, A., M. Jager, W. He, L. Ferro-Famil, and O. Hellwich, "Detection and classification of urban structures based on high-resolution SAR imagery," Urban Remote Sensing Joint Event, Paris, France, Apr. 11-13, 2007.

10. Chellappa, R. and S. Chatterjee, "Classification of textures using gaussian markov random fields," IEEE. Trans. Acoustics, Speech and Signal Processing, Vol. 33, 956-963, 1984.

11. Corbane, C., F. Faure, N. Baghdadi, N. Villeneuve, and M. Petit, "Rapid urban mapping using SAR/optical imagery synergy," Sensors, Vol. 8, No. 11, 7125-7143, 2008.
doi:10.3390/s8117125

12. Corbane, C., N. Baghdadi, X. Descombes, G. Wilson, N. Villeneuve, and M. Petit, "Comparative study on the performance of multiparameter SAR data for operational urban areas extraction using textural features," IEEE Geosci. Remote Sens. Letters, Vol. 6, No. 4, 728-732, 2009.
doi:10.1109/LGRS.2009.2024225

13. Yueh, S. H., J. A. Kong, J. K. Jao, R. T. Shin, H. A. Zebker, T. Le Toan, and H. Ottl, "K-distribution and polarimetric terrain radar clutter," Progress In Electromagnetics Research, Vol. 03, 237-275, 1990.

14. Lee, J. S., K. W. Hoppel, S. A. Mango, and A. R. Miller, "Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery," IEEE Trans. Geosci. Remote Sens., Vol. 32, 1017-1028, Sept. 1994.

15. Lee, J. S., M. R. Grunes, and G. De Grandi, "Polarimetric SAR speckle filtering and its impact on terrain classification," IEEE Trans. Geosci. Remote Sens., Vol. 37, No. 5, 2363-2373, 1999.
doi:10.1109/36.789635

16. Freeman, A. and S. Durden, "A three-component scattering model for polarimetric SAR data," IEEE Trans. Geosci. Remote Sens., Vol. 36, No. 3, 963-973, 1998.
doi:10.1109/36.673687

17. Yamaguchi, Y., T. Moriyama, M. Ishido, and H. Yamada, "Four component scattering model for polarimetric SAR image decomposition," IEEE Trans. Geosci. Remote Sens., Vol. 43, No. 8, 1699-1706, 2005.
doi:10.1109/TGRS.2005.852084

18. Yamaguchi, Y., Y. Yajima, and H. Yamada, "A four-component decomposition of POLSAR images based on the coherency matrix," IEEE Geosci. Remote Sens. Lett., Vol. 3, No. 3, 292-296, 2006.
doi:10.1109/LGRS.2006.869986

19. Yajima, Y., Y. Yamaguchi, R. Sato, H. Yamada, and W. M. Boerner, "POLSAR image analysis of wetlands using a modified four-component scattering power decomposition," IEEE Trans. Geosci. Remote Sens., Vol. 46, No. 6, 1667-1673, 2008.
doi:10.1109/TGRS.2008.916326

20. An, W. T., Y. Cui, and J. Yang, "Three-component model-based decomposition for polarimetric SAR data," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 6, 2732-2739, 2010.
doi:10.1109/TGRS.2010.2041242

21. An, W. T., C. H. Xia, X. Z. Yuan, Y. Cui, and J. Yang, "Four-component decomposition of polarimetric SAR images with deorientation," IEEE Geosci. Remote Sens. Lett., Vol. 8, No. 6, 1090-1094, 2011.
doi:10.1109/LGRS.2011.2157078

22. Lee, J. S., M. R. Grunes, E. Pottier, and L. F. Famil, "Unsupervised terrain classification preserving polarimetric scattering characteristics," IEEE Trans. Geosci. Remote Sens, Vol. 42, No. 4, 722-731, 2004.
doi:10.1109/TGRS.2003.819883

23. Chinchor, N., "MUC-4 evaluation metrics," Proc. of the Fourth Message Understanding Conference, McLean, Virginia, Jun. 16-18, 1992.

24. Chang, C. C. and C. J. Lin, "LIBSVM: A library for support vector machines," 2001, Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.