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Abstract—This paper addresses the problem of designing statistical
features for the extraction of building-up areas (BAs) from high-
resolution polarimetric synthetic aperture radar (PolSAR) imagery.
The idea is to represent a building-up area by the distribution of
its mid-level components, called intermediates, which are statistical
patterns unsupervised learnt from PolSAR images. More precisely, by
analyzing the structural properties and the polarimetric characteristics
exhibited in various terrain types, we propose two kinds of mid-
level features for small regions: the cluster based statistical feature
(CSF) and the scattering mechanism based statistical feature (SMSF).
In detail, for the CSF, the intermediates are the clusters with
unsupervised kmeans Wishart classification of the PolSAR images; for
the SMSF, the intermediates are the scattering mechanism categories
obtained by a four-component decomposition with deorientation based
unsupervised classification of the PolSAR images. In contrast with
existing features for describing BAs, the proposed features, i.e., CSF
and SMSF, capture more complex context information of BAs. We
compare the proposed features with those based on the Gaussian
Markov random field models, which have been proven to be suitable
for BAs mapping. Experimental results on RADARSAT-2 datasets
demonstrate the effectiveness of the proposed features.
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1. INTRODUCTION

As population centers, building-up areas (BAs) represent the most
dynamic and complicated ecological environment. Timely and
accurately collecting and analyzing the dynamics of BAs have become
a key issue in sustainable development planning. The extraction of
BAs provides valuable information for many applications, such as the
evaluation of ecological environment, population estimation, urban
construction and planning, emergency management and fast response
to natural disasters [1].

With the sensitivity to the dielectric and geometric characteristics
of objects and the weather independent imaging capability, synthetic
aperture radar (SAR) has demonstrated its potential in BAs
extraction [2]. One way to extract further information on BAs is
to exploit the complex scattering nature of the signal by using the
modern SAR sensors, for instance the RADARSAT-2 which enables
to provide high resolution fully polarimetric SAR (PolSAR) data.
Notice that, comparing with classical imaging radars, PolSAR is highly
advantageous [3]. It has become a powerful and indispensable tool for
the identification and interpretation of BAs [4].

Problem This paper addresses the problem of extracting BAs
from high-resolution PolSAR imagery. Using PolSAR images as
information source for the extraction of BAs has many advantages. For
instance, in addition to the well known “amplitude-only” SAR related
properties, it provides much more information on textual fine structure,
target orientation, symmetries, and material constituents, etc. [5].
However, the quickly evolving resolution and enriching information
of the PolSAR images also bring many challenges to the detection of
BAs:

• The information contained in a resolution cell of high-resolution
SAR images are richer and more specific. In the case of high-
resolution SAR images, target entity usually shows regional
characteristics of texture in geometric shapes, structures and
contextual information. Instead of reflecting the global physical
scattering property of target, the scattering properties of pixels in
BAs are more closely related to the target details. It implies that
the intra-class variance of the pixel-level features increases while
the inter-class variance decreases.

• BAs are geometrically complex landscapes. They are composed
of various natural terrain types, artificial objects and other
unpredictable elements, such as cars in different patterns [6]. The
variety of object properties (e.g., material, size, height) and the
overall layout of objects result in different appearances within the
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same type of BAs, i.e., different BA types correspond to different
composition patterns in terms of geographic location, natural
environments and building structural types and materials.

Thus, it is of great interest to develop effective and applicable features
to extract BAs from high-resolution PolSAR imagery, which describe
not only the local pixel-level information but also context information
of objects.

Previous work RADARSAT-2 was launched by the Canadian
Space Agency (CSA) in December 2007, carried with a C-band
polarimetric SAR sensor. It can provide a variety of imaging results,
including different polarization frequencies, spatial resolutions and
incident angles. The high resolution of RADARSAT-2 SAR images
can reveal certain details such as the arrangement of buildings, narrow
roads or vegetation distributed in BAs. Nevertheless, few studies have
focused on extracting BAs from RADARSAT-2 SAR images. Hu [7]
developed object-based and rule-based classification methodologies
for extracting urban land-cover information from multi-temporal
RADARSAT-1 and RADARSAT-2 images. Based on multi-temporal
RADARSAT-2 data, Niu [8] investigated both object-based and pixel-
based classification schemes for detailed urban land-cover mapping.
Regarding the adopted features, Hu [7] selected a subset of features
including spectral, shape and texture features, while Niu [8] compared
various polarimetric parameters for their concerns. Reigber et al. [9]
applied several advanced SAR image processing methods for detection
and classification of urban structures with airborne PolSAR data. It
is worth noticing that no feature was particularly designed to exploit
the characteristics of the BAs. And feature description of BAs in high-
resolution PolSAR images has not caught enough attention.

Moreover, the pixel-level features and the pixel-based methods can
not handle the problem caused by the increasing of image resolution.
Although the Gaussian Markov random field (GMRF) model [10]
based textural feature demonstrated its suitability for operational BAs
extraction from SAR images [11, 12], it does not capture contextual
information and polarimetric characteristics. Therefore, for the better
interpretation of BAs in high-resolution PolSAR images, there is a
strong need to put forward special feature descriptors in region level
which can integrate enriched context information and polarimetric
characteristics.

Contributions In comparison with other terrain types, BAs are
usually mixed of various natural objects (e.g., trees, grassland) and
man-made objects (e.g., buildings, roads) with wide diversities of
materials, orientations and size, etc.. Motivated by the composed
patterns of BAs, the main idea for BA modeling is to represent
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a building-up area by the distribution of its components, a mid-
level components as the basic elements of BAs modeling, named
intermediates. They are clusters of pixels unsupervised learnt from
PolSAR images. We use the statistics (for instance, the marginal
distributions) of the intermediates within each sample to characterize
BAs. More precisely, by analyzing the structural properties and
the polarimetric characteristics exhibited in various terrain types, we
propose two kinds of mid-level features. One is the cluster based
statistical feature (CSF), which represent a building-up area by the
distribution of the K-means clusters with Wishart distance of the
PolSAR images in region level. The other is the scattering mechanism
based statistical feature (SMSF). The scattering mechanism categories
are obtained by relying on a four-component decomposition with
deorientation of the PolSAR images. The experimental results will
show the effectiveness of the proposed feature descriptors for extracting
BAs from RADARSAT-2 imagery.

In the rest of this paper, Section 2 uses a case study to explain
why to choose mid-level features rather than pixel-level ones, Section 3
presents how to compute the new mid-level feature descriptors for BAs,
Section 4 evaluates the experimental results based on the RADARSAT-
2 PolSAR images, and the last section concludes this work.

2. WHY MID-LEVEL FEATURES: A CASE STUDY

In this section, we use a case study of BAs in San Francisco as an
example to explain in detail why we use mid-level features. Figure 1
shows the PolSAR images obtained by RADARSAT-2 for BAs in San
Francisco, where the optical images belonging to the same BA type
are also displayed correspondingly. For the sake of visualization, each
PolSAR image is illustrated as a RGB-color image, with the R, G,
and B channels referring to the |HH|, |HV | and |V V | of the PolSAR
image respectively.

From Figure 1, we can observe that different BA types correspond
to different composition patterns in terms of geographic location,
natural environments and building structural types and materials. For
instance, the commercial areas are representative of large-building
areas, where buildings are high and most constructed by glass and
metal. Many streets and little vegetation are around here. As shown
in Figure 1, sample Com1 and Com2 obtained from commercial BAs
exhibit bright color in PolSAR images. Also composed of buildings,
industrial factories, as shown in the samples Ind1 and Ind2, are mainly
located in the city industrial zone. Buildings in the industrial areas are
usually with large size, regular shape, concrete materials and smooth
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Figure 1. Samples of BAs in San Francisco. The lower row of
each sample shows the PolSAR image, and the upper row shows the
corresponding optical satellite images. Refer to the text for more
details.

material of the roof. The surroundings are spacious cement streets.
Large buildings are reflected as bright blocks in PolSAR images, while
the surrounding spacious cement roads and grounds appear as large
dark pieces in the image. Urban residential districts mainly refer to
the areas in the city with regularly and densely aligned buildings.
Comparing with the two BA types mentioned before, The buildings
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in residential areas have smaller size and are usually surrounded by
trees, regular grass and cement roads. However, there are many factors
that make the polarization representations of these residential samples
more or less different. For instance, the local layout is either in strips
or in blocks (Res1 and Res2). The colors reflected in PolSAR images
are both red, while the latter is brighter. In terms of the texture
characteristics, the former presents salient linear structure and the
latter shows block texture. Different greening levels in residential areas
(Res3 and Res4) affect the mixture degree of green color (vegetation)
in red (buildings). Building material can also have an effect on the
polarization representation, such as sample Res5 and Res6. Compared
with Res1 and Res7, samples of the same type but different layout
orientation also differ from each other. In addition, sample Res7

and Res8 present similar polarization appearances but have a little
different composition patterns. Sample Res9 shows either in red
strips or in green strips, because the buildings are aligned in twists
and turn along the meandering terrain, which results the big changes
of the angles between the buildings and the radar sensor. Sample
gRes1 represents the “green” residential area. Here, “green” means
that the residential areas are far from the city center but close to
mountain with the properties of high vegetation content and irregularly
distributed buildings, which produces the green and red spots inclusion
phenomenon.

In a word, the BAs are complicated and various in the case study.
Taking into account the cultural and geographical diversities and the
territory planning difference, the variety of BAs in different countries
will be larger. We can see that it is difficult to detect and identify
BAs with pixel-level features, such as the marginal distributions of
pixel values. However, as we show before, BA is composed of various
component objects (e.g., buildings, trees, streets, etc.), and can be
represented by the distribution of its components.

Thus, In the following parts, we adopt a mid-level components,
called intermediates, which are categories unsupervisedly learned from
PolSAR images, bypassing labeling and recognizing all the pixels. We
then model the distribution information of the intermediates within
the sample to characterize BAs.

3. DESIGNING OF STATISTICAL MID-LEVEL
FEATURE DESCRIPTORS

In this section, we propose two statistical features associated with
different intermediates for extracting BAs. First, in order to utilize the
polarimetric characteristics of BAs, we adopt the unsupervised Wishart
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classifier to learn the intermediates, which are the K-mean clusters with
Wishart distance of the PolSAR images. So, we name the mid-level
feature as cluster based statistical feature (CSF). Secondly, taking the
scattering mechanism categories as the intermediates, we can represent
a building-up area by the distribution of its intermediates. The
intermediates are unsupervisedly learnt from PolSAR images based
on a four-component decomposition with deorientation of polarimetric
coherent matrix. The scattering mechanism based statistical feature is
shorten as SMSF hereafter.

3.1. Cluster-based Statistical Feature (CSF)

For monostatic radar imaging of a reciprocal medium, the measured
scattering matrix define a polarimetric target vector

k = [Shh Shv Svv]
H (1)

where the superscript H denotes the matrix transpose.
The complete polarimetric information of the observed target is

conveyed in the covariance matrix, which is defined as

C =
1
n

n∑

i=1

k(i)k(i)∗H (2)

where k(i) denotes the scattering vector of the i-th sample, the
superscript “*” denotes the complex conjugate, and n is the number
of looks. The covariance matrix C follows a complex multivariate
Wishart distribution [13, 14]. Applying the maximum likelihood (ML)
classifier to the Wishart distribution, a Wishart distance [15] measure
was derived

d(C|Σm) = Tr(Σ−1
m C) + log(|Σm|) (3)

where Tr is the trace of a matrix, C the measured covariance matrix
of the query pixel, and Σm the mean covariance matrix of the m-th
class.

A maximum likelihood (ML) classifier based on Wishart distance
measure is expressed as Eq. (4). The pixel is assigned to the class with
the minimum distance.

d(C|Σi) ≤ d(C|Σj), ∀θj 6= θi (4)

where the pixel is finally assigned to class θi, i ∈ {1, . . . , K}, and
K is the number of clusters. The ML classifier in Eq. (4) can be
equally applied to the coherency matrix, which is linearly related to
the covariance matrix.

Unsupervised classification algorithms based on the Wishart
distance measure can be implemented by combining the Wishart ML
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classifier and a clustering algorithm (e.g., K-means). The unsupervised
K-means Wishart classification algorithm is shown in Alg. 1.

Algorithm 1: Unsupervised K-means Wishart classification
Input: Covariance matrices C for N pixels;

The number of clusters K.
Output: Class label for N pixels.

Speckle denoising with boxcar filter;
Initializing cluster centers Σ0

k with k = 1 to K;
for i ← 1 to I do

// I indicates the maximum iteration number
for n ← 1 to N do

for k ← 1 to K do
Calculate Wishart distance dCn,Σi−1

k as Eq. (3);
Classify pixel n according to Eq. (4);

// update cluster centers
for k ← 1 to K do

Σi
k ← Σj∈θk

(Cj);

Label pixels assigned to class θk as k.

Based on the unsupervised K-means Wishart classification
algorithm, each pixel is assigned to the corresponding cluster and has
its initial class label. The K clusters are expressed as intermediates
and the complex context of BAs can be described by the distribution
of intermediates. So we model the context information by building a
histogram. One bin of the histogram corresponds to one cluster learnt
from the unsupervised K-means Wishart classification algorithm and
its value suggests the composition state of a particular element. The
cluster based statistical feature, shorten as CSF, captures both the
distribution information of the composition elements in terrain samples
and the polarimetric statistics distribution characteristics.

3.2. Scattering Mechanism Based Statistical Feature
(SMSF)

BAs contain scatterers with a variety of distinctive scattering
mechanisms. In order to combining the polarimetric scattering
properties exhibited in different land cover areas and the context
knowledge, we propose the scattering mechanism based statistical
feature (SMSF). This feature is based on the fact that the composition
elements of BAs interact with the transmitted radar signals
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in complicated ways and therefore exhibit various backscattering
mechanisms including surface scattering, double-bounce scattering,
volume scattering and helix scattering. Due to the high resolution
of the RADARSAT-2 data, the return signal of each pixel is generally
governed by a single dominant scatter. In general, trees or vegetation
are dominated by the volume scattering and assigned with green
color. For surfaces of water, ground and road, the surface scattering is
dominant. A smooth surface causes specular reflection of the incident
energy and thus appears as darker toned areas on an image, while a
rough surface will scatter the energy in all directions and will appear
brighter in tone on an image. The double-bounce scattering (red) is
particularly strong in structures including road surface-building wall,
ground-trees, and man-made targets. Additionally, the helix scattering
is relevant for the complicated shapes in man-made structures whereas
disappears for almost all natural distributed scattering.

The physical scattering mechanisms of the natural distributed
target areas can be illustrated well by the three-component scattering
model developed by Freeman and Durden [16], which models the
observed covariance matrix as a linear sum of surface scattering, double
bounce scattering and volume scattering. However, it is inconsistent
with the general scattering case encountered BAs due to the
assumption of scattering reflection symmetry. Yamaguchi et al. [17, 18]
extended the three-component scattering model by adding the helix
scattering mechanism as the fourth component to deal with the
observed actual phenomenon. The model can be expressed as

〈T 〉 = fs[T ]surface + fd[T ]double + fv[T ]volume + fc[T ]helix (5)

where, T is the measured coherency matrix. [T ]surface, [T ]double,
[T ]volume and [T ]helix correspond to the coherency matrix for surface
scattering, double-bounce scattering, volume scattering and helix
scattering respectively, and fs, fd, fv and fc are the corresponding
coefficients.

To eliminate the negative power in the four-component decom-
position, a power constraint was introduced by Yajima et al. [19]. In
addition, the orientation of buildings with respect to the radar illumi-
nation also affects their polarimetric properties. Thus, it is possible
to confuse those BAs with vegetation. A rotation of the coherency
matrix (namely deorientation) is first employed by An et al. in the
three-component decomposition [20] and later work [21] applied the
deorientation prior to the four-component decomposition. The deori-
entation is defined as

Tθ = Deorientation(T ) = QTQH (6)
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where

[Q] =

[1 0 0
0 cos(2θ) sin(2θ)
0 − sin(2θ) cos(2θ)

]
(7)

where θ denotes the orientation angle, and Tθ is the rotated coherence
matrix.

The deorientation procedure can remove the fluctuant influence
of randomly distributed target orientation angles on polarimetric
scattering, and it can make two identical targets with different
orientation angles yield the same polarimetric matrix.

Based on the three-component decomposition scheme, Lee [22]
proposed an unsupervised terrain classification algorithm. In this
section, we extend this unsupervised classification algorithm by
incorporating the four-component decomposition with deorientation
of coherency matrices for initial categorizing, followed by iterated
refinement using the complex Wishart ML classifer. The classification
and merging processes are restricted to the pixels in the same
scattering category, which preserves the purity and homogeneity of
physical scattering characteristics. A flowchart of the unsupervised
classification algorithm based on four-component decomposition with
deorientation is given in Figure 2.

We list some differences as follows:

Figure 2. Flowchart of the unsupervised classification algorithm
based on four-component decomposition with deorientation.
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• In the process of initial categorization according to the dominant
scattering power, we adopt the four-component decomposition
with deorientation instead of three-component decomposition for
better characterizing BAs;

• When merging clusters within each category, the between-class
Wishart distance is calculated

Dij =
1
2
{ln(|Vi|) + ln(|Vj |) + Tr(V −1

i Vj + V −1
j Vi)} (8)

Two clusters with the shortest distance are merged until reaching
the desired number of clusters Nd. Considering the data volume
in our case, we limit the size of classes no larger than

Nmax = 10N/Nd (9)
Here N is the total number of pixels in all the samples, and we
set equal number of clusters for each scattering category instead
of being proportional to the number of pixels.
There are different components in various terrain types and they

exhibit various backscattering mechanisms. Dihedral structures of
wall-ground in BAs, mountain rocks and trunk-bareland, bridge girder-
deck and ship mast-deck exhibit strong double bounce scattering,
while road and water are characterized by surface scattering, trees
or vegetation are dominated by volume scattering. The contextual
information from the perspective of scattering mechanisms is the
different scattering mechanism components exhibited in the sample
region. Therefore, the intermediates here are the scattering mechanism
categories. Relying on the unsupervised classification algorithm
based on the four-component decomposition with deorientation of the
PolSAR images, each pixel is assigned to one particular category
and pixels belonging to the same category exhibit similar physical
scattering mechanism. So we describe a given sample by counting the
number of times each category label appears within that sample. Thus
one histogram is built and then normalized with the overall number of
pixels in sample region. The value of the kth bin gives a measure of
the composition ratio of one particular scattering mechanism within
the sample. The histogram is a numerical statistic which reflects the
distribution of the scattering mechanism categories and captures the
context information.

4. EXPERIMENTAL RESULTS

4.1. Datasets and Experimental Settings

Two experiments were carried out in this section to illustrate the
effectiveness of the proposed feature descriptors (CSF and SMSF) in
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BA extraction. One is based on the RADARSAT-2 PolSAR sample
datasets which including seven-class samples selected from six large
scenes. The 6 RADARSAT-2 full polarimetric SAR images are taken
over San Francisco (14416 × 2823 pixels), Gibraltar (11739 × 2156
pixels), Vancouver (13299×2120 pixels), Altona (12953×2822 pixels),
Flevoland (12944 × 2823 pixels) and Oberpfaffenhofen (12594 × 2409
pixels) respectively. The seven classes are BAs (540), water (185),
crop (160), forest (90), mountain (214), bridge (58) and ship (40), and
the size of all samples are 50 × 50 pixels. The other is based on two
RADARSAT-2 PolSAR scenes with size of 1000 × 1000 pixels taken
over Wuhan, China in December 7, 2011.

We compared the proposed features with those based on the
Gaussian Markov random field (GMRF) models, which have been
proven to be suitable for BAs mapping [12]. Moreover, for better
evaluating the performance of the proposed feature descriptors (CSF
and SMSF) in BA extraction, we adopted F value [23] and accuracy
as evaluation measures. F value measures the performance of a system
on a particular class (in our case, BAs). It reflects the average effect of
both precision and recall, which is suitable for our purpose. Accuracy
reflects the overall classification performance when regarding the task
of BA extraction as solving the problem as a binary classification.
Remarkably, accuracy does not fully reflect the performance of BA
extraction, as the non-BAs samples take a major proportion in
our testing dataset. Considering the internal optimization mapping
property of SVM classifier [24], KNN classifier with K = 5 was used
for the experiment based on the sample datasets, while SVM classifier
with RBF kernel was applied when testing on large images, and the
cost parameter C was set to 10.

4.2. Results on RADARSAT-2 Sample Datasets

Figure 3 illustrates CSF and SMSF features for RADARSAT-2 sample
datasets, which are selected with large within-class variation as
possible.

The intermediate strategy allows us not to clearly point out what
specific element each dimension of CSF corresponds to, since we only
concerned the overall composition pattern of each sample. As observed
in Figure 3, different composition patterns of various terrain types
make their values of CSF differ from each other. BAs belong to the
complex scenes and then most of bins for CSF have non-zero values.
There exist differences among CSF values of BAs because of their
diversity types. For the samples of water, the composition elements are
simple and only few bins of CSF have values. Similarly, other terrain
types have their unique patterns of CSF values. However, features of
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(a)

(b) (c)

(d) (e)

(f) (g)

Figure 3. Illustrating CSF and SMSF for RADARSAT-2 samples.
The first row are original PolSAR samples, the second and third
rows are the corresponding CSF and SMSF histograms, respectively.
(a) BAs. (b) Water. (c) Crop. (d) Forest. (e) Mountain. (f) Bridge.
(g) Ship.

some BAs exhibiting green color in PolSAR images are easily confused
with ones of forest samples. SMSF of PolSAR sample datasets are also
shown in Figure 3. Observe that for BAs some dimensions belonging to
double bounce scattering and helix scattering have values. For water



246 Yang et al.

and forest samples, the feature values have a dense distribution, the
former mainly falling in the top dimensions of surface scattering and
the later in some dimensions of volume scattering. The feature value
distribution of crop varies with its growth. We also find that SMSF
obtained in the sample level distinguishes the BAs from the rest land
cover types.

For the whole sample datasets, 162 samples (30%) of BAs were
selected to cover complete BA types as much as possible, and the
rest 378 samples (70%) were used to construct the testing set. We
randomly choose 50% respectively from the other six negative classes
as training set and the remainder as testing set. Five-fold experiments
were performed and the means and standard deviations of F values
and accuracies were recorded.

The effect of different window sizes for GMRF and different feature
dimensions for CSF and SMSF on BAs extraction were investigated.
Then the appropriate dimension were selected for the performance
comparison between the proposed features and the baseline ones.

GMRF Features computed with a window size of 15 × 15 pixels
has already proven to be suitable for BAs mapping in medium to
high resolution SAR images [12]. In the experiment, we compared
the performance based on 2-order GMRF (GMRF2 in short) with the
proposed features CSF and SMSF respectively. First, we investigated
the effect of the window size in our case. We divided the sample of
50× 50 pixels into N non-overlapping patches with size of h× h, and
then concatenated all the GMRF2 (6 dimensions) computed in patches
as the feature descriptor (6N dimensions) of the sample. In the case
of h = 15, we chose N = 9, 16 respectively and resized the sample
size from 50× 50 pixels to 15

√
N × 15

√
N . The results of GMRF2 for

extracting BAs were shown in Table 1.
Consistent with [12], a window size of 15 × 15 pixels is a good

choice. In addition, N = 9 performs much better. So we chose the
54-dim GMRF2 as our baseline. Besides, we also calculated the bag of
words representation for GMRF2 (abbreviated as bowGMRF2) based

Table 1. Results of building area extraction based on GMRF2.

Parameters
h = 10,

N = 25

h = 15,

N = 16

h = 15,

N = 9

h = 25,

N = 4

Dimensions dim = 150 dim = 96 dim = 54 dim = 24

Acc ± std

(%)
81.29 ± 1.06 81.80 ± 1.33 85.35 ± 0.78 84.17 ± 0.52

F ± std 0.812 ± 0.010 0.825 ± 0.008 0.854 ± 0.008 0.848 ± 0.011
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Table 2. Results based on CSF with different dimensions.

Parameters dim = 8 dim = 16 dim = 32 dim = 64

Acc ± std

(%)
97.39 ± 0.23 97.87 ± 0.19 98.54 ± 0.16 98.43 ± 0.26

F ± std 0.974 ± 0.001 0.980 ± 0.003 0.984 ± 0.003 0.984 ± 0.003

Table 3. Results based on SMSF with different dimensions.

Parameters dim = 8 dim = 16 dim = 32 dim = 64

Acc ± std

(%)
98.14 ± 0.16 97.36 ± 0.30 98.59 ± 0.33 99.40 ± 0.30

F ± std 0.981 ± 0.006 0.974 ± 0.004 0.986 ± 0.003 0.994 ± 0.003

on patches with size of 5× 5 pixels and 32 codewords, the accuracy is
84.02± 0.45, and the F measure is 0.831± 0.006.

We also considered different dimensions (cluster numbers) of CSF
for analyzing the performance of extracting BAs. From Table 2, the
overall accuracies and F values were relatively stable. As the cluster
number refers to the possible category number of all the pixels, it is
too small to cover all the categories. However, taking into account the
stability of K-means clustering algorithm, it should not be too large.
As shown in Table 2, CSF with 32 dimensions perform the best, so we
finally chose 32 as the dimension of CSF.

SMSF was calculated in pure unsupervised way using all the
training and testing samples. Table 3 shows the effect of the finally
merged cluster number for experimental results. When the final
category number is 32 or 64, the classification accuracies are both
over 98%, F values also surpass 0.98. Note that the performance
deteriorates significantly when the dimension values 16 or 8. For
computational efficiency, the dimension of SMSF was selected as 32.

From Tables 1–3, we observed that the proposed features CSF
and SMSF outperform the GMRFs, which specially designed for BAs
mapping. We also noticed that CSF has similar performance as SMSF.

4.3. Results on RADARSAT-2 Scenes

The optical and PolSAR images (R: HH, G: HV, B: VV) of
RADARSAT-2 scene-1 are shown in Figure 4(a) and (b), scene-2
corresponding to Figure 4(c) and (d). Most of scene-1 are densely
and regularly aligned residential areas, which have low buildings and
are surrounded by many trees, cement trails and wide trunk streets.
Due to the orientation of building blocks and houses, residential areas
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(a) (b)

(c) (d)

Figure 4. Two RADARSAT-2 scenes in Wuhan, China. (a) Optical
image of scene-1. (b) Optical image of scene-2. (c) Polarimetric SAR
image of scence-1. (d) Polarimetric SAR image of scence-2.

exhibit either green line or dark red line structures in SAR images. The
areas characterized by bright wide belt structures alternated with dark
stripe ones are high-rise BAs just completed or under construction.
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The bright red masses are large factories with blue roof in Wuhan.
In left bottom of Figure 4(b) there is a large scale of red area. It is a

(e) (f)

(c) (d)

(a) (b)

Figure 5. Extraction results of scene-1 with different features.
(a) Polarimetric SAR image. (b) Ground truth. (c) GMRF2 (dim
= 54). (d) BowGMRF2 (dim = 32). (e) CSF (dim = 32). (f) SMSF
(dim = 32).
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university, where exists many large high-rise buildings. We also observe
the dark blocks because of the lake and the stadium. For background
regions, it is worth noticing that bridges and ships both have strong

(a) (b)

(c) (d)

(e) (f)

Figure 6. Extraction results of scene-2 with different features. (a)
Polarimetric SAR image. (b) Ground truth. (c) GMRF2 (dim = 54).
(d) BowGMRF2 (dim = 32). (e) CSF (dim = 32). (f) SMSF (dim =
32).
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Table 4. BAs extraction results of scene-1 with different features.

Features GMRF2 bowGMRF2 CSF SMSF
Acc (%) 79.60 87.02 91.58 90.04

F 0.837 0.885 0.924 0.911

Table 5. BAs extraction results of scene-2 with different features.

Features GMRF2 bowGMRF2 CSF SMSF
Acc (%) 57.42 75.90 88.97 87.20

F 0.591 0.704 0.838 0.819

double bounce scattering powers. In scene-2, BAs occupy a relatively
smaller part and the background regions are more complex. Crop lands
are the dominant type and they are in different growth periods or still
unseeded. In contrast to scene-1, there exist a lot of irregularly aligned
and highlighted regions with block structures, which are new high-rise
BAs and industrial areas. The densely distributed houses in residential
areas are just built and with medium height and red roofs. In addition,
there are many isolated groups of buildings scattered in scene-2.

For each scene, we divided it into half-overlapped samples of
50× 50 pixels, and pick 15 BA samples and 20 background samples as
the training set. The BAs extraction results of scene-1 and scene-2 are
shown in Figure 5 and Figure 6 respectively. The ground truth maps
in Figure 5(b) and Figure 6(b) mark BAs as red color. Tables 4 ∼ 5
show the BAs extraction accuracies and F values on two large images
with different features, which further verify the superiority of CSF and
SMSF in extracting BAs from PolSAR images.

The sample size of 50 × 50 pixels can hold the composition
of different terrain types and capture sufficient context information.
However, the yielded block effects are obvious in the building-up
extraction results from large scenes. We could also apply our
algorithms directly at pixel level by extracting a patch at every pixel,
but this would be computationally expensive.

5. CONCLUSION

In this paper, two statistical feature descriptors, referred to CSF and
SMSF, for extracting BAs from PolSAR images have been presented.
Both of them introduce the contextual information at patch level. More
precisely, CSF is from the a perspective of composition complexity,
while SMSF is from the scattering mechanisms contained in sample
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regions. Experimental results on RADARSAT-2 PolSAR datasets
show very promising performances and the method significantly
outperforms the commonly used features. To reduce the blocking
artifacts that sometimes appear around the borders of patches, it may
help to use smaller and/or more densely sampled patches or an over-
segmentation based scheme for the patch-to-pixel label mapping.
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