Vol. 127
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-05-03
Complex Point Source for the 3D Laplace Operator
By
Progress In Electromagnetics Research, Vol. 127, 445-459, 2012
Abstract
The research about the so-called \emph{complex beams}, localized solutions of the Helmholtz wave equation, lead to the problem of finding the sources of such solutions, which may be formally expressed as a Dirac delta function of a complex argument. To investigate about the meaning of the Dirac delta distribution of complex argument, the Green's function of the 3D Poisson problem with a point source localized at an imaginary position in free space is considered. The main physical features of the potential created by that source are described. The inverse problem consists in looking for the real source distribution which causes that potential. The sources appear on a disk in the real space. Their physical interpretation requires a regularization process based on including the border of the disk.
Citation
Maria-Jesus Gonzalez-Morales, Raul Mahillo-Isla, Carlos Dehesa-Martinez, and Emilio Gago-Ribas, "Complex Point Source for the 3D Laplace Operator," Progress In Electromagnetics Research, Vol. 127, 445-459, 2012.
doi:10.2528/PIER12032305
References

1. Appell, P. E., "Quelques remarques sur la théorie des potentiels multiformes," Mathematische Annalen, Vol. 30, 155-156, 1887.
doi:10.1007/BF01564536

2. Arnaud, J. A. and H. Kogelnik, "Gaussian light beams with general astigmatism," Applied Optics, Vol. 8, No. 8, 1687-1694, 1969.
doi:10.1364/AO.8.001687

3. Izmest'ev, A. A., "Wave fields of beam type and spatial quantization of the angular momentum," Theoretical and Mathematical Physics, Vol. 7, No. 3, 591-599, 1971.
doi:10.1007/BF01032079

4. Deschamps, G. A., "Gaussian beam as a bundle of complex rays," Electron. Lett., Vol. 7, No. 23, 684-685, 1971.
doi:10.1049/el:19710467

5. Felsen, L. B., "Complex-source-point solutions of the field equations and their relations to the propagation and scattering of Gaussian beams," Symp. Math., Vol. 18, 39-56, 1976.

6. Lumori, M. L., "Gaussian beam modeling of SAR enhancement in paraxial and non-paraxial regions of biological tissues," Progress In Electromagnetics Research M, Vol. 11, No. 1-12, 2010.

7. Varaulta, S., S. Boliolib, and J. Sokoloffc, "Scattering by an array of rods using the gaussian beam formalism coupled to the scattering matrix method," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 8-9, 1131-1145, 2011.
doi:10.1163/156939311795762169

8. Menga, H. F., W. B. Doub, and J. L. Zhangc, "Generation of mathieu beams in millimeter wave band using diffractive elements," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 16, 2296-2307, 2011.
doi:10.1163/156939311798146999

9. Zhang, T.-L., Z.-H. Yan, F.-F. Fan, and B. Li, "Design of a ku-band compact corrugated horn with high gaussian beam effciency," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 1, 123-129, 2011.
doi:10.1163/156939311793898297

10. Lim, S.-H., J.-H. Han, S.-Y. Kim, and N.-H. Myung, "Azimuth beam pattern synthesis for airborne SAR system optimization," Progress In Electromagnetics Research, Vol. 106, 295-309, 2010.
doi:10.2528/PIER10061901

11. Mokhtari, A. and A. A. Shishegar, "Rigorous 3D vectorial gaussian beam modeling of demultiplexing performance of virtually-imaged-phased-arrays," Progress In Electromagnetics Research M, Vol. 13, 1-6, 2010.
doi:10.2528/PIERM10041604

12. Gago-Ribas, E., M. J. González-Morales, and C. Dehesa-Martínez, "Analytical parametrization of a 2D real propagation space in terms of complex electromagnetic beams," IEICE Trans. on Electronics, Vol. E80-C, No. 11, 1434-1439, 1997.

13. González-Morales, M. J., C. Dehesa-Martínez, and E. GagoRibas, "About complex extensions and their application in electromagnetics," Springer Proceedings in Physics, Vol. 104, 81-86, Springer,2006.
doi:10.1007/3-540-30636-6_8

14. Mahillo-Isla, R. and M. J. González-Morales, "Plane wave spectrum of 2D complex beams," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 8-9, 1123-1131, 2009.

15. González-Morales, M. J., R. Mahillo-Isla, E. Gago-Ribas, and C. Dehesa-Martínez, "3D complex beams in the spatial and the spectral domains," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8-9, 1103-1112, 2010.
doi:10.1163/156939310791586124

16. González-Morales, M. J., R. Mahillo-Isla, E. Gago-Ribas, and C. Dehesa-Martínez, "Complex polar coordinates in electromagnetics," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 2-3, 389-398, 2011.
doi:10.1163/156939311794362795

17. Kaiser, G., "Complex-distance potential theory, wave equations,and physical wavelets," Mathematical Methods in the Applied Sciences, Special Issue on Clifford Analysis in Applications, Vol. 25, 1577-1588, F. Sommen and W. Sproessig, Editors, 2002.

18. Kaiser, G., "Physical wavelets and their sources: Real physics in complex spacetime," Topical Review, Journal of Physics A:Mathematical and General, Vol. 36, No. 30, 291-338, 2003.
doi:10.1088/0305-4470/36/30/201

19. Mahillo-Isla, R., M. J. González-Morales, and C. DehesaMartínez, "Regularization of complex beams," 12th International Conference on Mathematical Methods in EM Theory, 242-244, 2008.

20. Tagirdzhanov, A. M., A. S. Blagovestchenskii, and A. P. Kiselev, "Complex source: Singularities in real space," Progress In Electromagnetics Research Symposium Proceedings, 1527-1530, Moscow,2009.

21. Tagirdzhanov, A. M., A. S. Blagovestchenskii, and A. P. Kiselev, "Complex source wavefields: Sources in real space," J. Phys. A:Math. Theor., Vol. 44, 2011.

22. Gleiser, R. J. and J. A. Pullin, "Appell rings in general relativity," Class. Quantum Grav., 977-985, 1988.

23. Gel'fand, I. B. and G. E. Shilov, Generalized Functions, Academic Press, Inc., 1964.