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Abstract—The research about the so-called complex beams, localized
solutions of the Helmholtz wave equation, lead to the problem of
finding the sources of such solutions, which may be formally expressed
as a Dirac delta function of a complex argument. To investigate about
the meaning of the Dirac delta distribution of complex argument,
the Green’s function of the 3D Poisson problem with a point source
localized at an imaginary position in free space is considered. The main
physical features of the potential created by that source are described.
The inverse problem consists in looking for the real source distribution
which causes that potential. The sources appear on a disk in the real
space. Their physical interpretation requires a regularization process
based on including the border of the disk.

1. INTRODUCTION

Complexification of the real coordinates to obtain new solutions of
partial differential equations is an old idea. It already appears in
a letter by Appell about potential theory [1]. It is based on the
invariance of the Laplace or Helmholtz operators under translations,
which include complex shifts. Some authors proposed replacing a real
point source with a complex placed one to obtain Gaussian beams
as a paraxial approximation to certain solutions of the Helmholtz
wave equation [2–5]. Radiation and scattering problems have been
constructed within the framework of these solutions, with special
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attention to paraxial approximations as Gaussian beams [6–11]. A
more general description of the exact complex beams and the complex
polar and spherical coordinates resulting from the complex extension
of the coordinates has been studied in [12–16]. The aforementioned
papers implied that there are some sources which may be formally
expressed as a Dirac delta function of a complex argument, but
omitting its analysis and meaning. Nevertheless, the study of the
solutions makes evident that there is a singularity on a disk in the real
space, which must be the source’s support. Kaiser deals with rigorous
mathematic studies, for both complex spatial and time coordinates,
specially for the Laplace equation in the Rn space [17, 18]. From
the physical point of view, basically he proposes to cover the disk
with a oblate spheroid (in R3) where some equivalent sources may
be defined. Mahillo-Isla et al. [19], give a physical solution to the
equivalent sources on the disk itself based on the evaluation of the field.
Finally, Tagirdzhanov et al. consider in [20] the complexified Green’s
function of the Helmholtz equation and the field sources that create
that solution. In [21], they deal with the singularity that appears in
the rim of the disk by covering it by a circular torus.

This work deals with the analysis and the complete physical
interpretation of the Dirac delta distribution in a specific problem.
The starting point is the Green’s function of the 3D Poisson problem
with a point source localized at an imaginary position and provided
that the potential vanishes at infinity. The resulting potential is a
valid solution of the Laplace equation except on a singular surface
which is the source’s support. This solution was already studied by
Gleiser and Pullin [22], in the context of Newtonian gravity and general
relativity. The inverse problem consists in looking for the real source
distribution which causes that potential. Physical meaning is found
by separating the real and imaginary parts of the problem and their
solutions. Both parts have a different physical insight. The real part
of the potential is created by a surface charge density distributed on
the disk which presents a non integrable singularity. To solve this
difficulty we propose a regularization process which consists in taking
into account the border of the disk, which contributes with an infinite
charge in such a way that the asymptotic potential is finite as implied
by the solution. With this prescription, a regularized source charge
density is established. Finally it is checked that those charges certainly
produce the given real part of the potential. The imaginary part of
the potential is created by a dipole distribution on the same disk. It
is checked that the associated dipolar moment surface density creates
such a potential and no regularization process is necessary.
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2. COMPLEXIFIED GREEN’S FUNCTION FOR THE 3D
LAPLACE OPERATOR IN FREE SPACE

It is well known that a charge q located at a position given by ~r0

produces at ~r a Coulomb potential

Φ(~r;~r0) =
q

4π

1
|~r − ~r0| . (1)

(Electric permittivity of the medium has been set to one.) This
potential is the Green’s function of the Poisson problem defined by

{
∇2Φ = −q δ3 (~r − ~r0) ,

Φ||~r−~r0|→∞ → 0.
(2)

where δ3(~r − ~r0) is the 3D Dirac delta distribution [23].
Let ~r0 be a complex position vector. (Concerning notation,

boldface fonts are used to denote complex quantities.) It is always
possible to choose some reference axes such that OZ axis matches ~r0

direction. Thus, the case with ~r0 = ibẑ will be considered. The new
Poisson equation becomes formally

∇2Φ = −qδ3 (~r −~r0) . (3)

The argument of the potential, R .= |~r −~r0| = |~r − ibẑ|, becomes
complex and it is called complex distance. It may be written as

R =
√

x2 + y2 + (z − ib)2 =
√

x2 + y2 + z2 − b2 − 2ibz. (4)

The appearance of a square root in (4) requires a branch cut selection.
The branch usually chosen [12], is <{R} ≥ 0 and the branch cut
becomes a disk, D, in the real space that includes the circle S = {z =
0, x2 + y2 < b2} and its border, the circumference C = {z = 0, ρ =√

x2 + y2 = b}. Potential in (1) becomes also complex,

Φ (~r;~r0) =
q

4π

1
R

. (5)

The complex potential given by (5) fulfills Laplace equation, ∇2Φ = 0,
except on the discontinuity defined by the branch cut [22]. It acquires
physical meaning by taking individually its real and imaginary parts,
which of course fulfill Laplace equation separately. Main physical
features of the real part of the potential, ΦR = <{Φ}, and the
imaginary part of the potential, ΦI = ={Φ}, are schematized in
Appendix A.
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3. COMPLEX POINT SOURCE IN THE REAL SPACE

3.1. Depiction of the Problem

The problem now consists in looking for the sources which cause the
complex potential given by (5), thus, finding the second term in

∇2Φ(~r ) = −f(~r ). (6)

Once the particular branch cut defined in Section 2 is chosen, the
complex distance in (4), when z → 0, may be written as

R = −isgn(z)
√

b2 − x2 − y2 − z2 + 2ibz, (7)

which is valid at both sides of the discontinuity and may be substituted
in (5) in order to write the complex potential in terms of the
observation points. There is an alternative and more convenient
representation based on the Heaviside function, in order to separate
the two semi-spaces z > 0 and z < 0, and their corresponding complex
distance given by (7). Thus, when z → 0 and x2 + y2 < b2,

Φ(x, y, z) =
qi

4π

1√
b2 − x2 − y2 − z2 + 2ibz

sgn(z). (8)

After the calculations resulting from (6), the source may be written as

f(~r )=− q

2π

(
iδ′(z)√

b2−x2−y2
+

bδ(z)

(b2−x2−y2)3/2

)
, x2+y2 <b2. (9)

The circumference, C, which is excluded at this point, will be included
and analyzed later. The real and imaginary parts may be separated,
∇2ΦR = −fR(~r ) and ∇2ΦI = −fI(~r ).

3.2. Real Part and Its Regularization

The source of the real part of the potential is given by

fR(~r ) = − qb

2π

1
(
b2 − x2 − y2

)3/2
δ(z), x2 + y2 < b2, (10)

which certainly defines a surface charge density on the disk, D,

σs(x, y, z = 0) = − qb

2π

1
(
b2 − x2 − y2

)3/2
, x2 + y2 ≤ b2. (11)

This result matches (A9) but presents a serious defect. The asymptotic
expression of the potential, (A7), states that the total charge on the
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disk should be equal to q, instead, if the total charge is calculated by
integration of (11) it turns out to be infinite. To solve this difficulty we
propose a regularization process which consists in taking into account
the border ρ = b. It must contribute with a charge, also infinite but
with opposite sign in such a way that the whole charge be q. The most
elementary regularization method consists in the substitution of the
upper limit in the charge integral, b, by pb, being p a non-dimensional
parameter, 0 < p < 1, which may approach to 1. Hence, the charge in
the circle is now given by

Qreg,S = −
∫ pb

ρ=0

qb
(
b2 − ρ2

)3/2
ρ dρ = q − q√

1− p2
, 0 < p < 1. (12)

This strongly suggests that the total regularized charge in the border
must be

Qreg,C =
q√

1− p2
, 0 < p < 1, (13)

uniformly distributed along the circumference to preserve the
symmetry around OZ axis.

Therefore, the regularized sources of the potential are

fR,reg(ρ, ϕ, z) = − qbp2δ(z)

2π
(
b2 − p2ρ2

)3/2
+

qδ(ρ− b)δ(z)

2πb
√

1− p2
, ρ ≤ b. (14)

Concerning the first term associated to the charge in the circle, notice
that a change of variable has been made in the integral in (12) in
such a way that if ρ varied from 0 to b, the new variable has been
scaled up to pb. It is to be understood that the limit when p → 1
must be made subsequently. The second term represents the linear
charge distribution by means of a volume density distribution, the
integral thereof extended to the whole space certainly represents the
regularized charge of the circumference.

3.3. Imaginary Part

On the other hand, the source of the imaginary part of the potential
is a dipole distribution on the same disk,

fI(~r ) = − q

2π

δ′(z)√
b2 − x2 − y2

, x2 + y2 < b2, (15)

amounting to a dipolar moment surface density of

~Πs =
q

2π

1√
b2 − x2 − y2

ẑ, x2 + y2 < b2. (16)
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The total dipolar moment of the source distributed in the whole
circle is ∫

S
~Πs · ~dS = qb, (17)

which is finite and agrees with the asymptotic result obtained in (A16).
Hence, the circumference ρ = b does not carry any dipole moment.

4. VALIDATION OF THE RESULTS

4.1. Real Part

To prove the validity of the regularization process, let us calculate the
potential created by the charges in (14) to check that they produce
the potential given by (A2) in the limit as p → 1. Some representative
observation points have been chosen.

4.1.1. Potential Along OZ Axis

Concerning the regularized potential created by the circumference, all
the charge elements are at the same distance of the observation point,
d =

√
b2 + z2, thus the regularized potential is

Φreg,C =
q√

1− p2

1
4π
√

b2 + z2
. (18)

The regularized potential created by the circle is calculated from the
first term in (14) and according to the well known expression

Φreg,S(~r ) =
∫

V

f
(
~r′

)
dV ′

4π
∣∣∣~r − ~r′

∣∣∣
. (19)

By using cylindrical coordinates, this volume integral can be worked
out with the result

Φreg,S(~r ) =
qp2 |z|

4π
(
b2 + p2z2

) − qp2
√

z2 + b2

4π
√

1− p2
(
b2 + p2z2

) . (20)

The total regularized potential is the sum of the results (18) and (20).
Finally, the real potential is obtained by making the limit as p → 1:

ΦR(z) = lim
p→1

Φreg(z) =
q |z|

4π
(
b2 + z2

) , (21)

which agrees with (A4).
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Figure 1. Calculation of the potential at a point P located at
z = 0 plane. P ′ is any position of the charges on the disk, D,
which includes the circle S = {z = 0, ρ < b} and the circumference
C = {z = 0, ρ = b}.

4.1.2. Potential at the z = 0 Plane

The regularized potential at a point P located at the z = 0 plane may
be obtained starting from

Φreg(P ) =
∫

C

λldl′

4πd
+

∫

S

σsdS′

4πd
, (22)

where d is the distance from a source point, P ′, to a observation point,
P , as it is shown in Figure 1, and λl and σs are the charge densities at
the circumference, C, and the circle, S, respectively.

Considering the linear charge density implicit in the second term
of (14), and considering also that source point on that circumference
with radius b are at a distance d = (ρ2 + b2 − 2bρ cosϕ′)1/2 from the
observation points, the contribution of the circumference is

Φreg,C(P ) =
q

4π2
√

1− p2

∫ π

0

dϕ′√
ρ2 + b2 − 2bρ cosϕ′

. (23)

After some calculations, this expression can be written as

Φreg,C(ρ) =
q

2π2
√

1− p2(ρ + b)

∫ π/2

0

dα√
1−m sin2 α

, (24)

which includes a complete elliptic integral of the first kind, K (m),
being m = 4bρ/(b + ρ)2. Therefore, the regularized potential due to
the circumference is

Φreg,C(ρ) =
q

2π2(b + ρ)
√

1− p2
K

( 4bρ

(b + ρ)2
)
. (25)
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The regularized potential due to the circle is obtained from the
second term of (22), where the surface charge density is found from
the first term of (14), and is given by

Φreg,S(ρ)=−qp2b

8π2

∫ 2π

0

∫ b

0

dϕ′ρ′dρ′
(
b2−p2ρ′2

)3/2√
ρ2+ρ′2−2ρρ′ cosϕ′

(26)

Integration with ϕ′ is similar to the one above. The integral with
respect to ρ′ must be numerically computed, as it has not an analytic
expression. For this purpose, it is useful to normalize all lengths with
respect to b. By calling ρ̄′ = ρ′/b and ρ̄ = ρ/b, (26) may be finally
written as

Φreg,S(ρ̄) = − qp2

2π2b

∫ 1

0

ρ̄′dρ̄′

(1− p2ρ̄′2)3/2 (ρ̄ + ρ̄′)
K

(
4ρ̄ρ̄′

(ρ̄ + ρ̄′)2

)
, (27)

and, with the same normalization, (25) may be rewritten as

Φreg,C(ρ̄) =
q

2π2b(1 + ρ̄)
√

1− p2
K

( 4ρ̄

(1 + ρ̄)2
)
. (28)

To test how the regularization method behaves, Table 1 shows the
potentials for points with ρ̄ < 1 (calculated with coefficient q/(2π2b)
set to unity) due to the circumference and the circle and the total
potential for different ρ̄ and regularization parameter p values. As
expected, the potential vanishes as p → 1. At observation points with
ρ̄ > 1 the calculated regularized total potential, Φreg, is an excellent
approximation to the exact value given by (A2) as it is shown in
Table 2.

Table 1. Numerical values of the potentials created by the circle,
ΦS , by the circumference, ΦC , and total, ΦT , for different observation
points at z = 0 plane and for different values of the regularization
parameter, p. The exact value of ΦT at these points is zero.

1− p
ρ̄ = 0.3 ρ̄ = 0.6

ΦS ΦC ΦT ΦS ΦC ΦT

10−3 −35.8907 35.9661 0.0754 −39.0588 39.1578 0.0990

10−4 −113.6852 113.7091 0.0239 −123.7688 123.8001 0.0313

10−5 −359.5640 359.5715 0.0075 −391.4715 391.4814 0.0099

10−6 −1137.0600 1137.0624 0.0024 −1237.9671 1237.9702 0.0031

10−7 −3595.7054 3595.7061 0.0008 −3914.8036 3914.8046 0.0010
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Table 2. Numerical values of the total potential calculated by the
regularization method Φreg for different values of the regularization
parameter, p, at different observation points at z = 0 plane. For
reference, the exact values of the potential are also shown.

ρ̄ = 1.5 ρ̄ = 3.0 ρ̄ = 10.0 ρ̄ = 100.0

1− p Φreg Φreg Φreg Φreg

10−3 1.3860 0.5539 0.1578 0.0157

10−4 1.3987 0.5549 0.1579 0.0157

10−5 1.4030 0.5552 0.1579 0.0157

10−6 1.4043 0.5553 0.1579 0.0157

Φexact 1.4050 0.5553 0.1579 0.0157

4.2. Imaginary Part

The potential created by the dipolar source distribution fI given
by (15) is

ΦI(ρ, z) =
∫

S

Πsz

4πd3
dS

=
qz

8π2

∫ b

0

∫ 2π

0

ρ′dρ′dϕ′
(
b2−ρ′2

)1/2(
ρ2+z2+ρ′2−2ρρ′ cosϕ′

)3/2
. (29)

Integration with respect to ϕ′ may be analytically evaluated and
written in terms of the complete elliptic integral of the second kind,
E (m), with the result

ΦI(ρ, z) =
qz

2π2

∫ b

0

ρ′dρ′
[
(ρ− ρ′)2 + z2

] √[
(ρ + ρ′)2 + z2

]
(b2 − ρ′2)

×E
[

4ρρ′

(ρ + ρ′)2 + z2

]
, (30)

which cannot be evaluated analytically. Nevertheless it has been
numerically checked that it provides the same values as (A11). Neither
correction nor regularization is necessary.
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5. CONCLUSIONS

This paper deals with the analysis of the Dirac delta distribution of
complex argument in an electrostatic problem. Its detailed study in the
real space allows a deeper insight of the complex extension of the real
coordinates to complex ones. It is shown that the extended Green’s
function is a valid solution of the Laplace equation except on a singular
surface which is the source’s support. Since the complex displacement
along one axis has consequences in the orthogonal plane to it, a first
interesting conclusion about 3D Dirac delta of complex argument is
that it cannot be decomposed in 1D Delta functions as it is made in
the real case, thus, δ3(~r− ibẑ) 6= δ(x)δ(y)δ(z− ib). However, it may be
interpreted in the real space as δ3(~r−ibẑ) = f1(x, y)δ(z)+if2(x, y)δ′(z).
This paper carefully analyzes its meaning in the real space, always in
the context of the particular proposed physical problem.

One of the most interesting aspects is that the result presents not
only a singularity but also a non integrable term, which makes not
possible its physical interpretation at a first instance. The problem
is resolved by a regularization process which consists in taking into
account the border of the disk, which contributes with an infinite
charge in such a way that a physical prescription is fulfilled, namely,
that the total charge must be q, as required by Gauss law. Some
representative observation points are selected in order to validate the
regularization process and the solution. In some simpler cases it has
been analytically tested, in some other numerically.

As it may be inferred from (6), the obtained physical
interpretation of the complex Dirac delta distribution depends on the
particular operator analyzed. The extension of the present method
to other problems, as Helmholtz equation with a complex point source
and d’Alembert equation with a complex point time source, is currently
in progress.
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APPENDIX A. PHYSICAL DESCRIPTION OF THE
POTENTIAL

The analysis of the potential given in (5) is based on the complex
distance properties, which may be found in [12–16]. We point out
two useful results concerning complex distance. First, expressions of
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R = R′ + iR′′ in terms of Cartesian coordinates,

R′=
1√
2

√√
(x2 + y2 + z2 − b2)2 + 4b2z2 + x2 + y2 + z2 − b2,

R′′=−sgn(z)√
2

√√
(x2+y2+z2−b2)2+4b2z2−x2−y2−z2+b2.

(A1)

On the other hand, if the complex distance defined by a source shifted
to ib is given by R in (4), the complex distance defined by a source
shifted to −ib will be R∗.

A.1. Analysis of the Real Part

The real part of the potential given by (5) may be written as,

ΦR(~r; ~r0) = <{Φ} =
1
2

[Φ + Φ∗] =
1
2

q

4π

[
1
R

+
1

R∗

]
. (A2)

This expression shows that ΦR is obtained by the summation of
two complex potentials created by a charge q/2 located at ~r0 = ibẑ
and an identical second charge located at ~r0 = −ibẑ. Potential
ΦR may be written in terms of the observation point coordinates by
substituting (A1) in (A2),

ΦR(~r;~r0)=
q

8π

R+R∗

RR∗ =
q

8π

√
2

√√(
r2−b2

)2
+4b2z2+r2 − b2

√(
r2−b2

)2
+4b2z2

(A3)

where r2 = x2 + y2 + z2 is the squared distance from the observation
point to the origin of the reference system. Although complex distance
in (4) is singular at the disk D, special circumstance occurs for the
potential ΦR. Inside the circle S it fulfills that R+R∗ = 0 meanwhile
RR∗ 6= 0 consequently ΦR = 0 at these points. The singularity reduces
to the border of the circle, C, where R+R∗ and RR∗ are zero and the
potential is not defined.

Main qualitative features of ΦR behaviour are shown in Figure A1
Let us analyze some particular expressions.

• Potential along OZ axis. When r = z and ρ = 0,

ΦR(ρ = 0, z) =
q

4π

|z|
z2 + b2

. (A4)

Notice that potential vanishes at z = 0, then it increases up
to a maximum value ΦR,max = q/(8πb) at z = ±b and, finally
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monotonically decreases to zero. Far from the origin, when
|z| >> b,

ΦR(ρ = 0, z) ∼ q

4π |z| . (A5)

which is the potential created by a point charge q.
• Potential at z = 0 plane. Thus r = ρ. Two cases may be

distinguished. Points on the circle S, ΦR(ρ, z = 0) = 0 as it
was argued above. Points outside the circumference C, that is
ρ > b:

ΦR(ρ, z = 0) =
q

4π
√

ρ2 − b2
. (A6)

Notice that, as ρ → b, ΦR →∞.
• Asymptotic expression. When r >> b, the potential becomes

ΦR ∼ q

4πr
, (A7)

which is the potential created by a point charge, q, at a distance
r from the observation point.
The electric field intensity may be obtained from (A3). Special

interest has the field on S, where the potential vanishes. The electric
field has only z component. At the side z = 0+ it is given by

Ez = − qb

4π

1

(b2 − ρ2)3/2
. (A8)

This allows obtaining the surface charge density on the circle,

σs = 2Ez = − qb

2π

1

(b2 − ρ2)3/2
. (A9)

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

Figure A1. Some equipotential surfaces of potential ΦR and field
lines are plotted in the (ρ, z) plane with coordinates normalized by
b. Potential vanishes inside the circle {ρ < 1, z = 0}. For symmetry
reasons, only the z ≥ 0 part is plotted.
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A.2. Analysis of the Imaginary Part

The imaginary part of the complex potential given by (5) may be
analyzed in a similar way as the real part, leading to

ΦI(~r;~r0) = ={Φ} =
1
2i

[Φ−Φ∗] = − q

4π

R′′

RR∗ . (A10)

This potential may be seen as the summation of two complex potentials
created by two charges −iq/2 and iq/2 located at imaginary positions
~r0 = ibẑ and ~r0 = −ibẑ, respectively. Potential given by (A10)
may be written in terms of the observation point coordinates by
substituting (A1) in (A10),

ΦI(ρ, z) =
q

4
√

2π
sgn(z)

√√
(ρ2 + z2 − b2)2 + 4b2z2 − ρ2 − z2 + b2

√
(ρ2 + z2 − b2)2 + 4b2z2

.

(A11)
Potential cancels at the points where√

(ρ2 + z2 − b2)2 + 4b2z2 = ρ2 + z2 − b2. (A12)

If both terms are squared, it is found that this condition fulfills only if
z = 0 and r2 > b2, thus, when ρ > b. This describes plane z = 0 outside
the circumference ρ = b. Notice that denominator of (A11) only cancels
in the circumference C. The potential at the circle {z = 0, ρ < b} is
discontinuous, as it may be found from (A11) making z close enough
to zero at both sides of the discontinuity. Finally the potential at z = 0
plane is given by

ΦI(ρ, z) =





q

4π

sgn(z)√
b2 − ρ2

, when z → 0 and ρ < b,

0, when z → 0 and ρ > b.

(A13)

Far away from the source, the potential (A11) may be asymptotically
approximated by substituting√

(r2 − b2)2 + 4b2z2 ' r2 (A14)

and √√
(r2 − b2)2 + 4b2z2 − r2 + b2 '

√
2b |z|
r

(A15)

leading to,

ΦI ' qb cos θ

4πr2
, (A16)

being r, θ spherical coordinates. This is the familiar expression for the
potential created by a point dipole with dipolar moment ~p = qbẑ.
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