Vol. 126
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-04-04
Investigation of Effective Plasma Frequencies in One-Dimensional Plasma Photonic Crystals
By
Progress In Electromagnetics Research, Vol. 126, 521-538, 2012
Abstract
In this work, a detailed investigation on the effective plasma frequency fp,eff for one-dimensional binary and ternary plasma-dielectric photonic crystals is made. We extract and then analyze the effective plasma frequency from the calculated photonic band structures at distinct conditions. In the binary photonic crystal, it is found that fp,eff in a photonic crystal is usually smaller than the plasma frequency fp of a bulk plasma system. fp,eff will increase when the electron concentration in the plasma layer increases. It also increases as the thickness of the plasma layer increases, but decreases with the increase in the thickness of dielectric layer. In the ternary photonic crystal, fp,eff is shown to be decreased compared to that of in the binary one. Our results are compared with the analytical expression for fp,eff derived from the concept of effective medium. Fairly good consistence has been obtained for both results. Additionally, a discussion on the effect of loss on fp,eff is also given. The study is limited to the case of normal incidence.
Citation
Chien-Jang Wu, Tzong-Jer Yang, Chang Ching Li, and Pei Yu Wu, "Investigation of Effective Plasma Frequencies in One-Dimensional Plasma Photonic Crystals," Progress In Electromagnetics Research, Vol. 126, 521-538, 2012.
doi:10.2528/PIER12030505
References

1. Yablonovitch, E., "Inhibited spontaneous emission in solid state physics and electronics ," Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059

2. John, S., "Strong localization of photons in certain disordered lattices," Phys. Rev. Lett., Vol. 58, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486

3. Fink, Y., J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and L. E. Thomas, "A dielectric omnidirectional reflector,", Vol. 282, 1679-1682, 1998.

4. Winn, J. N., Y. Fink, S. Fan, and J. D. Joannopoulos, "Omnidirectional reflection from a one-dimensional photonic crystal," Optics Lett., Vol. 23, 1573-1575, 1998.
doi:10.1364/OL.23.001573

5. Bloemera, M. J. and M. Scalora, "Transmissive properties of Ag/MgF2 photonic band gaps," Appl. Phys. Lett., Vol. 72, 1676-1678, 1998.
doi:10.1063/1.121150

6. Choi, Y.-K., Y.-K. Ha, J.-E. Kim, H. Y. Park, and K. Kim, "Antireflection film in one-dimensional metallo-dielectric photonic crystals ," Optics Commun., Vol. 230, 239-243, 2004.
doi:10.1016/j.optcom.2003.11.028

7. Perze-Rodriguez, F., F. Diaz-Monge, N. M. Makarov, R. Marquez-Islas, and B. Flores-Desirena, "Spatial-dispersion effects in one-dimensional photonic crystals with metallic inclusion," MSWW 07 Symposium Proceedings, 92-97, 2007.

8. Soto-Puebla, D., M. Xiao, and F. Ramos-Mendieta, "Optical properties of a dielectric-metallic superlattice: The complex photonic bands," Phys. Lett. A, Vol. 326, 273-280, 2004.
doi:10.1016/j.physleta.2004.03.070

9. Bermann, O. L., Y. E. Lozovik, S. L. Eiderman, and R. D. Coalson, "Superconducting photonic crystals," Phys. Rev. B, Vol. 74, 092505, 2006.
doi:10.1103/PhysRevB.74.092505

10. Takeda, H. and K. Yoshino, "Tunable photonic band schemes in two-dimensional photonic crystals composed of copper oxide high-temperature superconductors," Phys. Rev. B, Vol. 67, 245109, 2005.
doi:10.1103/PhysRevB.67.245109

11. Wu, C.-J., M.-S. Chen, and T.-J. Yang, "Photonic band structure for a superconducting-dielectric superlattice," Physica C, Vol. 432, 133-139, 2005.
doi:10.1016/j.physc.2005.07.019

12. Lin, W.-H., C.-J. Wu, T.-J. Yang, and S.-J. Chang, "Terahertz multichanneled filter in a superconducting photonic crystal ," Optics Express, Vol. 18, 27155-27166, 2010.
doi:10.1364/OE.18.027155

13. Van Duzer, T. and C. W. Turner, Principles of Superconductive Devices and Circuits, Edward Arnold, London, 1981.

14. Hojo, H. and A. Mase, "Dispersion relation of electromagnetic waves in one-dimensional plasma photonic crystals," J. Plasma Fusion Res., Vol. 80, 89-90, 2004.
doi:10.1585/jspf.80.89

15. Hojo, H. and A. Mase, "Electromagnetic-wave transmittance characteristics in one-dimensional plasma photonic crystals," J. Plasma Fusion Res., SERIES, Vol. 8, 477-479, 2009.

16. Li, W., Y. Zhao, R. Cui, and H. Zhang, "Plasma photonic crystal," Font. Optoelectron. China, Vol. 2, 103-107, 2009, and references therein.
doi:10.1007/s12200-009-0004-1

17. Prasad, S., V. Singh, and A. K. Singh, "Dispersion characteristics and optimization of reflectivity of binary one-dimensional plasma photonic crystal having linearly graded material ," Progress In Electromagnetics Research M, Vol. 22, 149-162, 2012.
doi:10.2528/PIERM11101004

18. Manzanares-Martinez, J., "Analytic expression for the effective plasma frequency in one-dimensional metallic-dielectric photonic crystal," Progress In Electromagnetics Research M, Vol. 13, 189-202, 2010.
doi:10.2528/PIERM10061905

19. Fan, W. and L. Dong, "Tunable one-dimensional plasma photonic crystals in dielectric barrier discharge," Phys. Plasmas, Vol. 17, 073506, 2010.
doi:10.1063/1.3456520

20. Faith, J., S. P. Kuo, and J. Huang, "Frequency downshifting and trapping of an electromagnetic wave by a rapidly created spatially periodic plasma," Phys. Rev. E, Vol. 55, 1843-1851, 1997.
doi:10.1103/PhysRevE.55.1843

21. Kuo, S. P. and J. Faith, "Interaction of an electromagnetic wave with a rapidly created spatially periodic plasma," Phys. Rev. E, Vol. 56, 2143-2150, 1997.
doi:10.1103/PhysRevE.56.2143

22. Sakai, O., T. Sakaguchi, and K. Tachibana, "Verification of a plasma photonic crystal for microwaves of millimeter wavelength range using two-dimensional array of columnar microplasmas," Appl. Phys. Lett., Vol. 87, 241505, 2005.
doi:10.1063/1.2147709

23. Sakai, O., T. Sakaguchi, and K. Tachibana, "Photonic bands in two-dimensional microplasma arrays. I. Theoretical derivation of band structure of electromagnetic waves," J. Appl. Phys., Vol. 101, 073304, 2007.
doi:10.1063/1.2713939

24. Hung, H.-C., C.-J. Wu, T.-J. Yang, and S.-J. Chang, "Enhancement of near-infrared photonic band gap in a doped semiconductor photonic crystal," Progress In Electromagnetics Research, Vol. 125, 219-235, 2012.
doi:10.2528/PIER12010311

25. Awasthi, S. K., U. Malaviya, and S. P. Ojha, "Enhancement of omnidirectional total-reflection wavelength range by using one-dimensional ternary photonic bandgap material," J. Opt. Soc. Am. B: Optical Physics, Vol. 23, 2566-2571, 2006.
doi:10.1364/JOSAB.23.002566

26. Banerjee, A., "Enhanced refractometric optical sensing by using one-dimensional ternary photonic crystals," Progress In Electromagnetics Research, Vol. 89, 11-22, 2009.
doi:10.2528/PIER08112105

27. Banerjee, A., "Enhanced incidence angle based spectrum tuning by using one-dimensional ternary photonic band gap structures," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8-9, 1023-1032, 2010.
doi:10.1163/156939310791586151

28. Wu, C.-J., Y.-H. Chung, B.-J. Syu, and T.-J. Yang, "Band gap extension in a one-dimensional ternary metal-dielectric photonic crystal ," Progress In Electromagnetics Research, Vol. 102, 81-93, 2010.
doi:10.2528/PIER10012004

29. Dai, X. Y., Y. J. Xiang, and S. C.Wen, "Broad omnidirectional reflector in the one-dimensional ternary photonic crystals containing superconductor," Progress In Electromagnetics Research, Vol. 120, 17-34, 2011.

30. Prasad, S., V. Singh, and S. K. Singh, "Modal propagation characteristics of EM waves in ternary one-dimensional plasma photonic crystals," Optik, Vol. 121, 1520-1528, 2010.
doi:10.1016/j.ijleo.2009.02.024

31. Naumov, A. N. and A. M. Zheltikov, "Ternary one-dimensional photonic band gap structures: Dispersion relation, extended phase-matching abilities and attosecond outlook," Laser Phys., Vol. 11, 879-884, 2001.

32. Morozov, G. V. and D. W. L. Sprung, "Floquet-Bloch waves in one-dimensional photonic crystals," Europhysics Lett., Vol. 96, 54005, 2011.
doi:10.1209/0295-5075/96/54005

33. Yeh, P., Optical Waves in Layered Media, Wiley, New York, 1988.

34. Morozov, G. V., F. Placido, and D. W. L. Sprung, "Absorptive photonic crystals in 1D," J. Optics, Vol. 13, 035102, 2011.
doi:10.1088/2040-8978/13/3/035102

35. Bergmair, M., M. Huber, and K. Hingerl, "Band structure, wiener bounds and coupled surface plasmons in one dimensional photonic crystals," Appl. Phys. Lett., Vol. 89, 081907-081909, 2006.
doi:10.1063/1.2338546

36. Naito, T., O. Saikai, and K. Tachibana, "Experimental verification of complex dispersion relation in lossy photonic crystals," Appl. Phys. Express, Vol. 1, 066003, 2008.
doi:10.1143/APEX.1.066003