
Progress In Electromagnetics Research, Vol. 126, 521–538, 2012

INVESTIGATION OF EFFECTIVE PLASMA FREQUEN-
CIES IN ONE-DIMENSIONAL PLASMA PHOTONIC
CRYSTALS

C.-J. Wu1, *, T.-J. Yang2, C.-C. Li1, and P.-Y. Wu1

1Institute of Electro-Optical Science and Technology, National Taiwan
Normal University, Taipei 116, Taiwan, R.O.C.
2Department of Electrical Engineering, Chung Hua University,
Hsinchu 300, Taiwan, R.O.C.

Abstract—In this work, a detailed investigation on the effective
plasma frequency fp, eff for one-dimensional binary and ternary plasma-
dielectric photonic crystals is made. We extract and then analyze
the effective plasma frequency from the calculated photonic band
structures at distinct conditions. In the binary photonic crystal, it
is found that fp, eff in a photonic crystal is usually smaller than the
plasma frequency fp of a bulk plasma system. fp, eff will increase
when the electron concentration in the plasma layer increases. It
also increases as the thickness of the plasma layer increases, but
decreases with the increase in the thickness of dielectric layer. In the
ternary photonic crystal, fp, eff is shown to be decreased compared
to that of in the binary one. Our results are compared with the
analytical expression for fp, eff derived from the concept of effective
medium. Fairly good consistence has been obtained for both results.
Additionally, a discussion on the effect of loss on fp, eff is also given.
The study is limited to the case of normal incidence.

1. INTRODUCTION

Over the past two decades, photonic crystals (PCs) have attracted
much attention since the pioneering works of Yablonovitch [1] and
John [2]. PCs are artificially periodic multilayer structures and possess
photonic band gaps (PBGs) which are formed due to the Bragg
scattering in the periodic structure. PBGs are physically analogous to
the electronic band gaps (EBGs) in semiconducting materials or solids.
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PCs are commonly referred to as the PBG materials. Engineering the
PBGs for realizing some useful photonic and optoelectronic devices
continues to be of much interest to the community.

For a PC made of all dielectric constituents is called a dielectric-
dielectric photonic crystal (DDPC). A simple one-dimensional DDPC
is known to have an omnidirectional PBG [3, 4]. Depending on the
constituent materials, PCs have many other types in addition to
the DDPCs. For instance, if one of the constituents is replaced by
a metal, then we have a metal-dielectric photonic crystal (MDPC).
The MDPCs can be used to enhance the wave transmission in the
visible region [5, 6]. In addition, with the inherent metallic loss, the
photonic band structure in an MDPC is complex [7, 8]. Meanwhile,
photonic crystals containing superconducting materials also attract
much attention and they are referred to as superconductor-dielectric
photonic crystals (SDPCs) [9–12]. The use of superconductor in an
SDPC makes it tunable because the permittivity of a superconductor
is strongly dependent on the temperature and the magnetic field as
well [13]. Both metal and superconductor have a common feature of
dispersion, namely their permittivities are dependent on the frequency.

Another type of photonic crystals called the plasma photonic
crystal (PPC) was first proposed by Hojo and Mase in 2004 [14]. Since
then, there have been many reports on the PPCs [15–17]. In a bulk
plasma system, the relative permittivity takes the form

ε (ω) = 1− ω2
p

ω2 − jγω
, (1)

where γ, the loss factor, is the plasma collision frequency and the
plasma frequency ωp, which is dependent on the electron density, and
written as

ωp = 2πfp =
(

Ne2

mε0

)1/2

, (2)

where N is the electron concentration, m the mass of free electron, e
the electronic charge, and ε0 the permittivity of vacuum. It is clear
that changing N will cause the plasma frequency to be changed, which,
in turn, leads to a variation in the permittivity of a plasma system.
With a variable permittivity, a plasma system can be regarded as a
dispersive medium. In the first order approximation where loss is
negligible, the wave propagation in a plasma system can be simply
characterized by fp . For frequency higher than fp , the plasma is
transparent to the incident wave since the permittivity (or refractive
index) is positive. On the other hand, wave propagation in a plasma
system is forbidden when the frequency is lower than fp. Thus, the
plasma frequency, fp can be defined as a cutoff (or characteristic)



Progress In Electromagnetics Research, Vol. 126, 2012 523

frequency for a bulk plasma system. It should be mentioned that the
expression of permittivity in Eq. (1) is based on the use of convention
exp(jωt) for the time part, as also will be taken in the following Eq. (3).

However, electromagnetic waves can, indeed, propagate in a PPC
even at the frequencies less than fp due to the structural periodicity.
The lowest frequency, at which wave propagation can start to happen,
is defined as an effective plasma frequency fp, eff for a PPC system.
The concept of effective plasma frequency enables us to replace the
PPC by a semi-infinite effective plasma medium which is characterized
by an effective permittivity together with fp, eff [18]. It will be later
shown that fp, eff is always smaller than fp. The frequency range of
0–fp, eff is thus called the low-frequency gap. Obviously, the existence
of this low-frequency gap in the PPC is fundamentally different from
the DDPC, which has no such low-frequency gap.

The purpose of this paper is to give a more detailed analysis on
the effective plasma frequency for both the binary and ternary PPCs.
The binary PCs are most common structures in the literature reports
and experimental studies are now available [19–23]. However, ternary
PCs have also attracted much attention recently [24–30]. Naumov and
Zheltikov first showed that multicomponent (ternary) one-dimensional
(1D) PBG structures provide additional degree of freedom in dispersion
control compared to binary 1D PBG structure [31]. Motivated by these
facts, in this work, effective plasma frequencies for these two structures
will be considered. In the binary PPC, we would like to investigate how
the effective plasma frequency can be influenced by the thicknesses of
plasma and dielectric layers as well as the electron concentration of
the plasma layer. In the ternary PPC, the plasma layer is sandwiched
by two dielectrics with different permittivities in each period. The
role played by the additional dielectric layer in the effective plasma
frequency will be analyzed and illustrated.

The paper is organized as follows. Section 1 is the introductory
part. The theoretical formulations are described in Section 2. In
Section 3, we present and discuss the numerical results. We conclude
a summary in Section 4.

2. BASIC EQUATIONS

Let us first consider the binary PPC shown in the upper panel of
Figure 1, in which the constituent dielectric layer A has a permittivity
of εA, and the constituent layer B is a plasma with a permittivity of
εB (as given in Eq. (1)). The refractive indices of A and B are given
by np = √

εp , p = A and B, respectively. The spatial periodicity is
defined by a = dA + dB. The refractive index profile can be expressed
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as

n (x) =
{

nA, ma < x < ma + dA,
nB, ma + dA < x < (m + 1) a,

m = 0,±1,±2, . . . . (3)

For the transverse electric (TE) wave, the electric field propagating
in the x-direction and positive z-direction can be written as E (x, z, t) =
ŷE (x) ej(ωt−βz), where β is the (constant) tangential component of the
wave vector of modulus k0n(x) inside the medium and the function
E(x) satisfies the Helmholtz equation,

d 2

dx2
E (x) +

[
k2

0n
2 (x)− β2

]
E (x) = 0, (4)

inside the system layers, where k0 = ω/c is the vacuum wave number.
Eq. (4), in fact, is a form of Hill’s equation [32]. Solutions for Eq. (4)
can be written as a linear combination of forward and backward waves,
namely

E (x) =
{

ane−jkA,xx + bnejkA,xx, 0 < x < dA

cne−jkB,xx + dnejkB,xx, dA < x < a,
. (5)

Figure 1. The structures of the infinite binary (upper panel) and
ternary (lower panel) plasma-dielectric photonic crystals, where layer
A and C are dielectrics and the plasma occupies layer B. The
corresponding thicknesses and permittivities are denoted by dA, dB,
dC , and εA, εB, εC , respectively.
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where an, bn, cn, and dn are unknown constants, and the normal
component of wave number is given by

kA,x =
√

k2
0n

2
A − β2 = k0nA cos θA, (6)

kB,x =
√

k2
0n

2
B − β2 = k0nB cos θB, (7)

where θA and θB are the ray angles in layers A and B, respectively,
which are related by the Snell’s law of refraction. By capitalizing on
the continuous boundary conditions at x = 0, dA, and dA + dB, it is
direct to construct the following matrix relationship,(

an−1

bn−1

)
=

(
A B
C D

)(
an

bn

)
, (8)

where A, B, C, and D are the matrix elements of the single
period translational matrix that relates the amplitudes of forward and
backward waves an−1 and bn−1 in one layer of a period to those of
the equivalent layer in the next period. Expressions for the matrix
elements A, B, C, and D are written by [33]

A = ejkA,xdA

[
cos (kB,xdB) +

j

2

(
kB,x

kA,x
+

kA,x

kB,x

)
sin (kB,xdB)

]
, (9)

B = e−jkA,xdA

[
1
2
j

(
kB,x

kA,x
− kA,x

kB,x

)
sin (kB,xdB)

]
, (10)

C = ejkA,xdA

[
−1

2
j

(
kB,x

kA,x
− kA,x

kB,x

)
sin (kB,xdB)

]
, (11)

D = e−jkA,xdA

[
cos (kB,xdB)− 1

2
j

(
kB,x

kA,x
+

kA,x

kB,x

)
sin(kB,xdB)

]
, (12)

In addition, for a periodic structure, according to the Floquet-
Bloch theorem, the electric-field solution must be cast as a Bloch form,
namely

EK (x, t) = EK (x) e−jKxej ωt, (13)

where the amplitude is a periodic function of a, i.e., EK (x + ma) =
EK (x). The Bloch wave vector K can be determined by the half trace
of the translational matrix in Eq. (8), i.e.,

cos (Ka) =
1
2

(A + D) . (14)

The explicit expression of Eq. (14) is given by
cos (Ka) = cos (kA, xdA) cos (kB, xdB)

−1
2

(
kA, x

kB, x
+

kB, x

kA, x

)
sin (kA, xdA) sin (kB, xdB) . (15)
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For the transverse magnetic (TM) wave, the above-mentioned electric
field should be replaced by the magnetic field, and then the expression
in Eq. (15) can be written by

cos (Ka) = cos (kA, xdA) cos (kB, xdB)

−1
2

(
n2

BkA, x

n2
AkB, x

+
n2

AkB, x

n2
BkA, x

)
sin (kA, xdA) sin (kB, xdB) ,(16)

In general, the Bloch wave number K appearing in the left hand side of
Eq. (15) or (16) is complex-valued, i.e., K = Kr−jKi. For frequencies
at which K’s are purely real, we have the pass band. On the other
hand, we will have a PBG if the imaginary part Ki exists in the solution
for K.

For the ternary plasma PC shown in the lower panel of Figure 1,
each period is now made of three layers, i.e., A/B/C, where another
dielectric layer C is added. The spatial periodicity is denoted by
a = dA + dB + dC . The field solution is also given in Eq. (13) and, in
this case, the Bloch wave number can be computed by the following
equation,

cos (KΛ) = cos(kA, xdA)cos(kB, xdB)cos (kC, xdC)

−1
2

(
nA

nB
+

nB

nA

)
sin(kA, xdA)sin(kB, xdB)cos(kC, xdC)

−1
2

(
nB

nC
+

nC

nB

)
cos(kA, xdA)sin(kB, xdB)sin(kC, xdC)

−1
2

(
nA

nC
+

nC

nA

)
sin(kA, xdA)cos(kB, xdB)sin(kC, xdC) .(17)

It should be noted that Eq. (17) holds only for the normal incidence,
i.e., the ray angle is θi = 0. In this study, for both the binary
and ternary PPCs, we shall limit to the case of normal incidence to
investigate the effective plasma frequency.

3. NUMERICAL RESULTS AND DISCUSSION

3.1. Effective Plasma Frequency in a Binary PPC

Let us now present the numerical analysis on the effective plasma
frequency for the binary PPC. In the following calculations, we shall
consider the normal incidence and lossless case in plasma, i.e., γ = 0.
The calculated photonic band structure (PBS) is plotted in Figure
2, in which we take thicknesses dA = 0.5mm, dB = 5 mm, and the
dielectric is taken to be a quartz with nA = 2 [15]. In addition, the
electron concentration N = 1017 m−3 is taken. At this concentration,
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the calculated bulk plasma frequency is fp = 2.84GHz according to
Eq. (2). As indicated in Figure 2, the starting frequency of the first
pass band is defined as the effective plasma frequency fp, eff for the
binary PPC. The calculated value of fp, eff is 2.38 GHz which is smaller
than fp. It can be expected that if N → 0, then fp, eff → 0 because
fp → 0, which, in turn, reduces to the case of a simple all-dielectric
PC that is known to have the pass band starting from zero-frequency.
The lowest band gap at frequency range of 0–fp, eff is referred to as the
low-frequency gap. The second gap is the common Bragg gap because
the permittivity (index of refraction) of plasma is positive there. In
this gap, the plasma behaves like a dispersive dielectric material with

Figure 2. The calculated photonic band structure for a binary
PPC with dA = 0.5mm, dB = 5mm and electron concentration
N = 1017 m−3. The calculated fp, eff = 2.38 GHz (indicated by arrow)
is less than the bulk plasma frequency of fp = 2.84GHz. The shaded
areas represent the band gaps.

Figure 3. The calculated PBSs at different electron concentrations
of N = 1017, 1018, 5 × 1018, and 1019 m−3, respectively. The effective
plasma frequency is blue-shifted as N increases.
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Figure 4. The calculated fp, eff versus electron concentration N for a
binary PPC with dA = 0.5mm, dB = 5 mm.

Figure 5. The calculated fp, eff versus the thickness of dielectric layer
dA at a fixed carrier concentration N = 1019 m−3 and dB = 5 mm.

Figure 6. The calculated fp, eff versus the thickness of plasma layer
dB at a fixed carrier concentration N = 1019 m−3 and dA = 5 mm.
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a real and positive refractive index. The gap edges are f/fp = 7.75
and 9.65, leading to a gap size of ∆f = 1.90fp.

Next, with both thicknesses dA and dB fixed, the first bands at
distinct values of N are plotted in Figure 3, in which it is seen that
fp, eff (marked by an arrow) will increase as N increases. A plot of fp, eff

versus N is depicted in Figure 4, in which the values of fp, eff are 2.38,
7.54, 16.65, and 23.06GHz for N = 1017, 1018, 5× 1018, and 1019 m−3,
respectively. The shift in fp, eff can be ascribed to the increase in fp

when N is increased. The results shown here are consistent with the
experimental data reported in [19]. In Figure 7 of [19], it is seen that
the dependence of effective plasma frequency on the electron density
has a similar tendency as in Figure 4.

We now investigate how the thickness of the dielectric layer affects
the effective plasma frequency. In Figure 5, we plot fp, eff as a
function of dA at a fixed value of N = 1019 m−3 and dB = 5 mm.
With this concentration, the plasma frequency is calculated to be
fp = 28.38GHz. At dA = 0.05 and 5 mm, we have fp, eff = 27.81 and
8.89GHz, respectively. It can be seen that, for dA larger than 0.1 mm,
the decrease in fp, eff is salient. However, for a thinner dielectric layer
like dA < 0.1mm, the effective plasma frequency, fp, eff of PPC is
approaching to the bulk plasma frequency, fp. It indicates that the
effect of structural periodicity can be pronounced when the thickness
of dielectric layer must be preferably larger than 0.1 mm if plasma
layer is at 5 mm. Based on the result in Figure 5, it is expected
that the effective plasma frequency will be an increasing function of
the thickness of plasma layer. Indeed, it can be seen in Figure 6,
where fp, eff versus dB is plotted at the conditions of N = 1019 m−3

and dA = 5 mm. It is seen that fp, eff is blue-shifted when dB is
increased. At dB = 0.5mm, fp, eff = 4.26 GHz, and fp, eff = 1.41 GHz
for dB = 0.05 mm.

The above dependences of effective plasma frequency are extracted
by the calculated PBSs. We now compare them with the analytical
expression for the effective plasma frequency in a PC. Here, we
briefly review the derivation of effective plasma frequency made
by Manzanares-Martinez [18]. Since the permittivity is a periodic
function, it can be expanded as a Fourier series, namely

ε (x, ω) =
∑

GN

ε̃ (GN )ejGNx = ε̃ (0) +
∑

GN 6=0

ε̃ (GN )ejGNx, (18)

where GN = 2πN/a is the reciprocal lattice vector, and N is an integer.
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The Fourier coefficients at N = 0 and N 6= 0 are respectively given by

ε̃ (0) = φεB + (1− φ) εA, (19)

ε̃ (GN ) =
εA − εB

jGNa

(
1− e−jGNdA

)
, (20)

where φ = dB/a is the filling factor of the plasma layer in one unit
cell. The effective permittivity can be taken as the average value in
one period, namely

ε eff (ω) = 〈ε (x, ω)〉 =
1
a

a∫

0

dx ′ε
(
x− x′, ω

)
. (21)

Substituting the Fourier series, Eqs. (18)–(20), together with the
permittivity in Eq. (1) leads to the effective permittivity of the effective
bulk plasma which can effectively replace a structure of PPC, namely

ε eff (ω) = ε0, eff −
φω2

p

ω2 − jγω
, (22)

where ε0, eff = εA + φ (1− εA) is the effective static permittivity.
According to Eq. (22), it is natural to define the effective plasma
frequency as

ωp, eff = 2πfp, eff = φ1/2ωp . (23)

However, this is not what we want because the first term in the right
hand side of Eq. (22) is not one, as expressed in Eq. (1). In fact, the
effective plasma frequency is best extracted by considering the lossless
case (γ = 0). In this case, the effective plasma frequency is redefined
as a characteristic frequency at which εeff (ω) = 0. Based on Eq. (22)
an analytical expression for the effective plasma frequency can thus be
derived as follows,

fp, eff =
φ1/2ωp

2π
√

εA + φ (1− εA)
. (24)

Eq. (24) is the main expression that describes the effective plasma
frequency for a binary photonic crystal system. It can be seen that
fp, eff relies on the filling factor and the plasma frequency of plasma
layer, and the permittivity of dielectric layer. Taking the conditions
in Figure 2, Eq. (24) gives fp, eff = 2.398GHz, which shows a good
agreement with the result in Figure 2. Again, in Figure 5, with
dA = 0.05, dB = 5 mm, and N = 1019 m−3, Eq. (24) yields
fp, eff = 27.82 GHz, nicely consistent with that shown in Figure 5.
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3.2. Effective Plasma Frequency in a Ternary PPC

Let us now investigate the effective plasma frequency in a ternary PPC
shown in the lower panel of Figure 1. Here, the additional layer C is
taken to be MgF2 whose refractive index is nC = 1.38 [30]. With
the same material parameters for layers A and B in the calculation of
Figure 2 and the thickness of MgF2 being dC = 0.5mm, the calculated
PBS is pictured in Figure 7. Again, fp, eff is smaller than fp. It can
be further seen that the PBS is red-shifted compared to that of the
binary PPC in Figure 2. The shift causes the effective plasma frequency
to be smaller than that of the binary PPC. The calculated value is
fp, eff = 2.24GHz, as indicated by the vertical arrow. In addition,
the second gap (with a center frequency around 8fp) is also enhanced
when compared to the binary one in Figure 2 because the gap edges
are f/fp = 6.85 and 8.80, and hence the gap size is ∆f = 1.95fp.

Next, we vary the thickness of layer C and see what will happen
in the effective plasma frequency. The calculated fp, eff is shown in
Figure 8. It can be seen from the figure that fp, eff will be moved
to the lower frequency as the thickness dC increases. The values of
fp, eff at dC = 0.1, 0.5, 1, 5 and 10 mm are 0.83fp, 0.79fp, 0.75fp,
0.55fp, and 0.44fp, respectively. The addition of dielectric layer C in
the ternary PPC will decrease the effective plasma frequency compared
to the binary PPC. For dC less than 1mm, the shift in fp, eff is not so
substantial as that for greater than 1 mm.

Figure 7. The calculated photonic band structure for a ternary
PPC with dA = 0.5mm, dB = 5 mm, dC = 0.5mm and electron
concentration N = 1017 m−3. The calculated fp, eff = 2.24 GHz
(indicated by arrow) is less than the effective plasma frequency
(fp, eff = 2.38 GHz) of a binary PPC and the bulk plasma frequency
(fp = 2.84GHz). The shaded areas represent the band gaps.
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Figure 8. The calculated effective plasma frequency (marked by the
vertical arrow) for a ternary PPC with dA = 0.5mm, dB = 5mm, and
electron concentration N = 1017 m−3 for different thicknesses dC = 0.1,
0.5, 1, 5, and 10 mm, respectively.

In order to quantitatively explain the blue-shift in fp, eff in the
ternary PPC, we can repeat the derivations from Eqs. (18)–(24) and
then arrive at the following similar expressions, i.e., Eq. (19) is revised
as

ε̃ (0) = φ εB + (1− φ) εav. (25)

Most importantly, Eq. (24) for the effective plasma frequency is now
given by

fp, eff =
φ1/2ωp

2π
√

εav + φ (1− εav)
, (26)

where
εav =

εAdA + εCdC

dA + dC
, (27)

is the average permittivity of two dielectric layers A and C. This
enables us to treat the ternary PPC as an effective binary PPC by
combining layers A and C as an equivalent layer with a permittivity
of εav. As a test of Eq. (26), we take dA = 0.5mm, dC = 0.5mm,
nA = 2(εA = 22), and nC = 1.38(εC = 1.382), we have εav = 2.9522.
In this case, with dB = 5mm, the filling factor of the plasma layer is
φ = dB/a = 5/6. Then, using Eq. (26), we arrive at fp, eff = 0.7929fp,
which is in good agreement with that in Figure 8. Similarly, if thickness
of layer C is decreased to dC = 0.1mm, then φ = dB/a = 5/5.6, and
εav = 3.6507. In this case, Eq. (26) leas to fp, eff = 0.8339fp, which
again agrees well with Figure 8. Thus, we have successfully explained
the red-shift in fp, eff when the thickness of layer C is increased. The
analytical expression in Eq. (26) gives a good agreement with the
numerical results.
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3.3. Effective Plasma Frequency in the Presence of Loss

In the above discussion, we have consider the lossless case, i.e., γ = 0
in Eq. (1). The effective plasma frequency can be well explained by
the analytical expressions such as Eqs. (24) and (26). However, in the
presence of loss it is not possible to derive a simple analytical expression
for the effective plasma frequency because the effective permittivity
in Eq. (22) is a complex function. In addition, the photonic band
structure becomes complex, that is, the Bloch wave number K together
with cos(Ka) will be complex-valued everywhere, including the PBG
as well as the transmission band) [34]. For example, taking the same
calculation conditions as in Figure 2 and taking into account the loss of
γ = 0.1ωp, the calculated complex photonic band structure is shown in
Figure 9. Here, the upper and lower panels are the real and imaginary
parts of Bloch wavenumber, respectively. It can be seen that, due to
the inclusion of loss, a salient effect on the first band gap is seen. The
first PBG in the real part of Bloch wavenumber in Figure 2 is no longer
flat, as circled in the upper panel. This non-flat PBG is reflected on
the appearance of imaginary part, Ki, as illustrated in the lower panel.
These non-flat features in both Kr and Ki are not easy for us to define
the effective plasma frequency when the loss is incorporated.

Figure 9. The calculated real (upper panel) and imaginary (lower
panel) parts of the Bloch wavenumber at γ = 0.1ωp for three different
thicknesses of plasma layer, dB = 5, 3, and 1mm, respectively. Here,
dA = 0.5 mm, and electron concentration N = 1017 m−3.
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Figure 10. The calculated real (upper panel) and imaginary (lower
panel) parts of the Bloch wavenumber for the first PBG of Figure 9.

In order to define the effective plasma frequency of a PPC in the
presence of loss, we take a close look at the first PBG of Figure 9, as
shown in Figure 10. Here, the vertical dashed arrow-line marks the
effective plasma frequency for dB = 5 mm in the absence of the loss,
as depicted in Figure 2. From Figure 10, we see that both Kr and
Ki first concave downwards and then upwards. For convenience, we
define the effective plasma frequency as the turning position at which
Ki makes a change from concave down to concave up. We indicate
them with gray arrows. The effective plasma frequency at dB = 5mm
with loss is somewhat larger than that of without loss (the vertical
dashed line). The effective plasma frequency is the shifted to the lower
frequency as the thickness of plasma layer decreases, which is like in
the absence of the loss in Figure 6. In addition, it is worth mentioning
that the presence of loss in PPC leads to a so-called complex photonic
band structure. Thus, the criterion of the definition of effective plasma
frequency is not unique [18, 35]. Finally, it is worth mentioning that
the experimental verification of the complex photonic band structure
in a lossy PPC has been available [36].

4. CONCLUSION

In summary, we have investigated the effective plasma frequency for
the binary and ternary plasma photonic crystals in the case of normal
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incidence. We find that, for both the binary and ternary PPCs, the
effective plasma frequency is always smaller than the bulk plasma
frequency of the plasma system. In a binary PPC, the effective plasma
frequency is increased as the electron concentration increases. It is also
increased as the thickness of the plasma layer increases. However, it
will decrease when the thickness of the dielectric layer is increased. In
the ternary PPC, it is found that the additional dielectric layer will
cause the effective plasma frequency to become smaller compared to the
binary one. The calculated results are compared with the analytical
expression derived from the effective medium concept. The validity
of analytical expression for the effective plasma frequency in a PPC
has been verified by the calculated photonic band structure. Good
agreement between the results of analytical expression and PBS has
been obtained. Finally, we have discussed the definition of effective
plasma frequency in the presence of loss. With the loss, the complex
photonic band structures enable us to graphically define the effective
plasma frequency. However, no analytical expression for the effective
plasma frequency can be derived.
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